Search:
Match:
19 results

Analysis

This paper explores a novel approach to approximating the global Hamiltonian in Quantum Field Theory (QFT) using local information derived from conformal field theory (CFT) and operator algebras. The core idea is to express the global Hamiltonian in terms of the modular Hamiltonian of a local region, offering a new perspective on how to understand and compute global properties from local ones. The use of operator-algebraic properties, particularly nuclearity, suggests a focus on the mathematical structure of QFT and its implications for physical calculations. The potential impact lies in providing new tools for analyzing and simulating QFT systems, especially in finite volumes.
Reference

The paper proposes local approximations to the global Minkowski Hamiltonian in quantum field theory (QFT) motivated by the operator-algebraic property of nuclearity.

Analysis

This paper presents a novel, non-perturbative approach to studying 3D superconformal field theories (SCFTs), specifically the $\mathcal{N}=1$ superconformal Ising critical point. It leverages the fuzzy sphere regularization technique to provide a microscopic understanding of strongly coupled critical phenomena. The significance lies in its ability to directly extract scaling dimensions, demonstrate conformal multiplet structure, and track renormalization group flow, offering a controlled route to studying these complex theories.
Reference

The paper demonstrates conformal multiplet structure together with the hallmark of emergent spacetime supersymmetry through characteristic relations between fermionic and bosonic operators.

Analysis

This paper addresses inconsistencies in previous calculations of extremal and non-extremal three-point functions involving semiclassical probes in the context of holography. It clarifies the roles of wavefunctions and moduli averaging, resolving discrepancies between supergravity and CFT calculations for extremal correlators, particularly those involving giant gravitons. The paper proposes a new ansatz for giant graviton wavefunctions that aligns with large N limits of certain correlators in N=4 SYM.
Reference

The paper clarifies the roles of wavefunctions and averaging over moduli, concluding that holographic computations may be performed with or without averaging.

Analysis

This paper explores a novel construction in the context of AdS/CFT, specifically investigating the holographic duals of a specific type of entanglement in multiple copies of a gauge theory. The authors propose a connection between sums over gauge group representations in matrix models and 'bubbling wormhole' geometries, which are multi-covers of AdS5 x S5. The work contributes to our understanding of the relationship between entanglement, geometry, and gauge theory, potentially offering new insights into black hole physics and quantum gravity.
Reference

The holographic duals are ''bubbling wormhole'' geometries: multi-covers of AdS$_5$ $ imes S^5$ whose conformal boundary consists of multiple four-spheres intersecting on a common circle.

Analysis

This paper provides a systematic overview of Web3 RegTech solutions for Anti-Money Laundering and Counter-Financing of Terrorism compliance in the context of cryptocurrencies. It highlights the challenges posed by the decentralized nature of Web3 and analyzes how blockchain-native RegTech leverages distributed ledger properties to enable novel compliance capabilities. The paper's value lies in its taxonomies, analysis of existing platforms, and identification of gaps and research directions.
Reference

Web3 RegTech enables transaction graph analysis, real-time risk assessment, cross-chain analytics, and privacy-preserving verification approaches that are difficult to achieve or less commonly deployed in traditional centralized systems.

Analysis

This paper explores the connection between the holographic central charge, black hole thermodynamics, and quantum information using the AdS/CFT correspondence. It investigates how the size of the central charge (large vs. small) impacts black hole stability, entropy, and the information loss paradox. The study provides insights into the nature of gravity and the behavior of black holes in different quantum gravity regimes.
Reference

The paper finds that the entanglement entropy of Hawking radiation before the Page time increases with time, with the slope determined by the central charge. After the Page time, the unitarity of black hole evaporation is restored, and the entanglement entropy includes a logarithmic correction related to the central charge.

Analysis

This paper investigates the dynamics of a charged scalar field near the horizon of an extremal charged BTZ black hole. It demonstrates that the electric field in the near-horizon AdS2 region can trigger an instability, which is resolved by the formation of a scalar cloud. This cloud screens the electric flux, leading to a self-consistent stationary configuration. The paper provides an analytical solution for the scalar profile and discusses its implications, offering insights into electric screening in black holes and the role of near-horizon dynamics.
Reference

The paper shows that the instability is resolved by the formation of a static scalar cloud supported by Schwinger pair production.

Virasoro Symmetry in Neural Networks

Published:Dec 30, 2025 19:00
1 min read
ArXiv

Analysis

This paper presents a novel approach to constructing Neural Network Field Theories (NN-FTs) that exhibit the full Virasoro symmetry, a key feature of 2D Conformal Field Theories (CFTs). The authors achieve this by carefully designing the architecture and parameter distributions of the neural network, enabling the realization of a local stress-energy tensor. This is a significant advancement because it overcomes a common limitation of NN-FTs, which typically lack local conformal symmetry. The paper's construction of a free boson theory, followed by extensions to Majorana fermions and super-Virasoro symmetry, demonstrates the versatility of the approach. The inclusion of numerical simulations to validate the analytical results further strengthens the paper's claims. The extension to boundary NN-FTs is also a notable contribution.
Reference

The paper presents the first construction of an NN-FT that encodes the full Virasoro symmetry of a 2d CFT.

Analysis

This paper explores the connections between holomorphic conformal field theory (CFT) and dualities in 3D topological quantum field theories (TQFTs), extending the concept of level-rank duality. It proposes that holomorphic CFTs with Kac-Moody subalgebras can define topological interfaces between Chern-Simons gauge theories. Condensing specific anyons on these interfaces leads to dualities between TQFTs. The work focuses on the c=24 holomorphic theories classified by Schellekens, uncovering new dualities, some involving non-abelian anyons and non-invertible symmetries. The findings generalize beyond c=24, including a duality between Spin(n^2)_2 and a twisted dihedral group gauge theory. The paper also identifies a sequence of holomorphic CFTs at c=2(k-1) with Spin(k)_2 fusion category symmetry.
Reference

The paper discovers novel sporadic dualities, some of which involve condensation of anyons with non-abelian statistics, i.e. gauging non-invertible one-form global symmetries.

Analysis

This paper investigates the impact of TsT deformations on a D7-brane probe in a D3-brane background with a magnetic field, exploring chiral symmetry breaking and meson spectra. It identifies a special value of the TsT parameter that restores the perpendicular modes and recovers the magnetic field interpretation, leading to an AdS3 x S5 background. The work connects to D1/D5 systems, RG flows, and defect field theories, offering insights into holographic duality and potentially new avenues for understanding strongly coupled field theories.
Reference

The combined effect of the magnetic field and the TsT deformation singles out the special value k = -1/H. At this point, the perpendicular modes are restored.

Analysis

This paper explores the interfaces between gapless quantum phases, particularly those with internal symmetries. It argues that these interfaces, rather than boundaries, provide a more robust way to distinguish between different phases. The key finding is that interfaces between conformal field theories (CFTs) that differ in symmetry charge assignments must flow to non-invertible defects. This offers a new perspective on the interplay between topology and gapless phases, providing a physical indicator for symmetry-enriched criticality.
Reference

Whenever two 1+1d conformal field theories (CFTs) differ in symmetry charge assignments of local operators or twisted sectors, any symmetry-preserving spatial interface between the theories must flow to a non-invertible defect.

Analysis

This paper provides a theoretical framework, using a noncommutative version of twisted de Rham theory, to prove the double-copy relationship between open- and closed-string amplitudes in Anti-de Sitter (AdS) space. This is significant because it provides a mathematical foundation for understanding the relationship between these amplitudes, which is crucial for studying string theory in AdS space and understanding the AdS/CFT correspondence. The work builds upon existing knowledge of double-copy relationships in flat space and extends it to the more complex AdS setting, potentially offering new insights into the behavior of string amplitudes under curvature corrections.
Reference

The inverse of this intersection number is precisely the AdS double-copy kernel for the four-point open- and closed-string generating functions.

Analysis

This paper explores the construction of conformal field theories (CFTs) with central charge c>1 by coupling multiple Virasoro minimal models. The key innovation is breaking the full permutation symmetry of the coupled models to smaller subgroups, leading to a wider variety of potential CFTs. The authors rigorously classify fixed points for small numbers of coupled models (N=4,5) and conduct a search for larger N. The identification of fixed points with specific symmetry groups (e.g., PSL2(N), Mathieu group) is particularly significant, as it expands the known landscape of CFTs. The paper's rigorous approach and discovery of new fixed points contribute to our understanding of CFTs beyond the standard minimal models.
Reference

The paper rigorously classifies fixed points with N=4,5 and identifies fixed points with finite Lie-type symmetry and a sporadic Mathieu group.

Analysis

This article likely discusses the application of integrability techniques to study the spectrum of a two-dimensional conformal field theory (CFT) known as the fishnet model. The fishnet model is a specific type of CFT that has gained interest due to its connection to scattering amplitudes in quantum field theory and its potential for exact solutions. The use of integrability suggests the authors are exploring methods to find exact or highly accurate results for the model's properties, such as the spectrum of scaling dimensions of its operators. The ArXiv source indicates this is a pre-print, meaning it's a research paper submitted for peer review.
Reference

Chiral Higher Spin Gravity and Strong Homotopy Algebra

Published:Dec 27, 2025 21:49
1 min read
ArXiv

Analysis

This paper explores Chiral Higher Spin Gravity (HiSGRA), a theoretical framework that unifies self-dual Yang-Mills and self-dual gravity. It's significant because it provides a covariant and coordinate-independent formulation of HiSGRA, potentially linking it to the AdS/CFT correspondence and $O(N)$ vector models. The use of $L_\infty$-algebras and $A_\infty$-algebras, along with connections to non-commutative deformation quantization and Kontsevich's formality theorem, suggests deep mathematical underpinnings and potential for new insights into quantum gravity and related fields.
Reference

The paper constructs a covariant formulation for self-dual Yang-Mills and self-dual gravity, and subsequently extends this construction to the full Chiral Higher Spin Gravity.

Scalar-Hairy AdS Black Hole Phase Transition

Published:Dec 27, 2025 01:57
1 min read
ArXiv

Analysis

This paper investigates the phase transitions of scalar-hairy black holes in asymptotically anti-de Sitter spacetime within the Einstein-Maxwell-scalar model. It explores the emergence of different hairy black hole solutions (scalar-hairy and tachyonic-hairy) and their phase diagram, highlighting a first-order phase transition with a critical point. The study's significance lies in understanding the behavior of black holes in modified gravity theories and the potential for new phases and transitions.
Reference

The phase diagram reveals a first-order phase transition line between the tachyonic-hairy and scalar-hairy phases, originating at a critical point in the extreme temperature and chemical potential regime.

Analysis

This paper introduces a formula for understanding how anyons (exotic particles) behave when they cross domain walls in topological phases of matter. This is significant because it provides a mathematical framework for classifying different types of anyons and understanding quantum phase transitions, which are fundamental concepts in condensed matter physics and quantum information theory. The approach uses algebraic tools (fusion rings and ring homomorphisms) and connects to conformal field theories (CFTs) and renormalization group (RG) flows, offering a unified perspective on these complex phenomena. The paper's potential impact lies in its ability to classify and predict the behavior of quantum systems, which could lead to advancements in quantum computing and materials science.
Reference

The paper proposes a formula for the transformation law of anyons through a gapped or symmetry-preserving domain wall, based on ring homomorphisms between fusion rings.

Research#physics🔬 ResearchAnalyzed: Jan 4, 2026 08:10

Why Indices Count the Total Number of Black Hole Microstates (at large N)

Published:Dec 23, 2025 00:34
1 min read
ArXiv

Analysis

This article likely explores the use of mathematical indices in theoretical physics, specifically within the context of black hole thermodynamics and quantum gravity. The phrase "at large N" suggests the use of techniques like the AdS/CFT correspondence or other large-N limits to simplify calculations and gain insights into the behavior of black holes. The focus is on understanding the microstates, which are the different quantum states that a black hole can exist in, and how these states contribute to its entropy.

Key Takeaways

    Reference

    Research#physics🔬 ResearchAnalyzed: Jan 4, 2026 10:25

    Quantum Black Holes and Gauge/Gravity Duality

    Published:Dec 21, 2025 18:28
    1 min read
    ArXiv

    Analysis

    This article likely discusses the theoretical physics concepts of quantum black holes and the relationship between gauge theories and gravity, often explored through the lens of the AdS/CFT correspondence (gauge/gravity duality). The ArXiv source suggests it's a pre-print, indicating ongoing research and potentially complex mathematical formulations. The focus would be on understanding the quantum properties of black holes and how they relate to simpler, more tractable gauge theories.
    Reference

    Without the actual article content, a specific quote cannot be provided. However, a relevant quote might discuss the information paradox, the holographic principle, or specific calculations within the AdS/CFT framework.