Search:
Match:
2 results

Analysis

This paper explores the interfaces between gapless quantum phases, particularly those with internal symmetries. It argues that these interfaces, rather than boundaries, provide a more robust way to distinguish between different phases. The key finding is that interfaces between conformal field theories (CFTs) that differ in symmetry charge assignments must flow to non-invertible defects. This offers a new perspective on the interplay between topology and gapless phases, providing a physical indicator for symmetry-enriched criticality.
Reference

Whenever two 1+1d conformal field theories (CFTs) differ in symmetry charge assignments of local operators or twisted sectors, any symmetry-preserving spatial interface between the theories must flow to a non-invertible defect.

Charge-Informed Quantum Error Correction Analysis

Published:Dec 26, 2025 18:59
1 min read
ArXiv

Analysis

This paper investigates quantum error correction in U(1) symmetry-enriched topological quantum memories, focusing on decoders that utilize charge information. It explores the phase transitions and universality classes of these decoders, comparing their performance to charge-agnostic methods. The research is significant because it provides insights into improving the efficiency and robustness of quantum error correction by incorporating symmetry information.
Reference

The paper demonstrates that charge-informed decoders dramatically outperform charge-agnostic decoders in symmetry-enriched topological codes.