Search:
Match:
3 results

Analysis

This paper addresses inconsistencies in previous calculations of extremal and non-extremal three-point functions involving semiclassical probes in the context of holography. It clarifies the roles of wavefunctions and moduli averaging, resolving discrepancies between supergravity and CFT calculations for extremal correlators, particularly those involving giant gravitons. The paper proposes a new ansatz for giant graviton wavefunctions that aligns with large N limits of certain correlators in N=4 SYM.
Reference

The paper clarifies the roles of wavefunctions and averaging over moduli, concluding that holographic computations may be performed with or without averaging.

research#physics🔬 ResearchAnalyzed: Jan 4, 2026 06:48

Correlators are simpler than wavefunctions

Published:Dec 29, 2025 19:00
1 min read
ArXiv

Analysis

The article's title suggests a comparison between two concepts in physics, likely quantum mechanics. The claim is that correlators are simpler to understand or work with than wavefunctions. This implies a potential shift in how certain physical phenomena are approached or analyzed. The source being ArXiv indicates this is a pre-print research paper, suggesting a new scientific finding or perspective.
Reference

Analysis

This paper introduces a novel machine learning framework, Schrödinger AI, inspired by quantum mechanics. It proposes a unified approach to classification, reasoning, and generalization by leveraging spectral decomposition, dynamic evolution of semantic wavefunctions, and operator calculus. The core idea is to model learning as navigating a semantic energy landscape, offering potential advantages over traditional methods in terms of interpretability, robustness, and generalization capabilities. The paper's significance lies in its physics-driven approach, which could lead to new paradigms in machine learning.
Reference

Schrödinger AI demonstrates: (a) emergent semantic manifolds that reflect human-conceived class relations without explicit supervision; (b) dynamic reasoning that adapts to changing environments, including maze navigation with real-time potential-field perturbations; and (c) exact operator generalization on modular arithmetic tasks, where the system learns group actions and composes them across sequences far beyond training length.