Search:
Match:
5 results

Virasoro Symmetry in Neural Networks

Published:Dec 30, 2025 19:00
1 min read
ArXiv

Analysis

This paper presents a novel approach to constructing Neural Network Field Theories (NN-FTs) that exhibit the full Virasoro symmetry, a key feature of 2D Conformal Field Theories (CFTs). The authors achieve this by carefully designing the architecture and parameter distributions of the neural network, enabling the realization of a local stress-energy tensor. This is a significant advancement because it overcomes a common limitation of NN-FTs, which typically lack local conformal symmetry. The paper's construction of a free boson theory, followed by extensions to Majorana fermions and super-Virasoro symmetry, demonstrates the versatility of the approach. The inclusion of numerical simulations to validate the analytical results further strengthens the paper's claims. The extension to boundary NN-FTs is also a notable contribution.
Reference

The paper presents the first construction of an NN-FT that encodes the full Virasoro symmetry of a 2d CFT.

Research#physics🔬 ResearchAnalyzed: Jan 4, 2026 08:55

Landau-Zener-Stückelberg-Majorana dynamics of magnetized quarkonia

Published:Dec 30, 2025 08:29
1 min read
ArXiv

Analysis

This article likely discusses the quantum mechanical behavior of quarkonia (bound states of quarks and antiquarks) in the presence of a magnetic field, focusing on the Landau-Zener-Stückelberg-Majorana (LZSM) dynamics. This suggests an investigation into how these particles transition between energy levels under the influence of the magnetic field and potentially other factors. The use of 'ArXiv' as the source indicates this is a pre-print research paper, meaning it has not yet undergone peer review.

Key Takeaways

    Reference

    Analysis

    This paper explores the potential for observing lepton number violation (LNV) at the Large Hadron Collider (LHC) within a specific theoretical framework (Zee Model with leptoquarks). The significance lies in its potential to directly test LNV, which would confirm the Majorana nature of neutrinos, a fundamental aspect of particle physics. The study provides a detailed collider analysis, identifying promising signal channels and estimating the reach of the High-Luminosity LHC (HL-LHC).
    Reference

    The HL-LHC can probe leptoquark masses up to $m_{ m LQ} \sim 1.5~\mathrm{TeV}$ with this process.

    Analysis

    This paper explores a novel ferroelectric transition in a magnon Bose-Einstein condensate, driven by its interaction with an electric field. The key finding is the emergence of non-reciprocal superfluidity, exceptional points, and a bosonic analog of Majorana fermions. This work could have implications for spintronics and quantum information processing by providing a new platform for manipulating magnons and exploring exotic quantum phenomena.
    Reference

    The paper shows that the feedback drives a spontaneous ferroelectric transition in the magnon superfluid, accompanied by a persistent magnon supercurrent.

    Analysis

    This article reports on the application of unsupervised learning techniques to identify Majorana topology, a concept in condensed matter physics. The 'unreasonable effectiveness' suggests the AI model performed surprisingly well in this task. The source being ArXiv indicates this is a pre-print research paper.
    Reference