Search:
Match:
4 results

Analysis

This paper explores the connections between holomorphic conformal field theory (CFT) and dualities in 3D topological quantum field theories (TQFTs), extending the concept of level-rank duality. It proposes that holomorphic CFTs with Kac-Moody subalgebras can define topological interfaces between Chern-Simons gauge theories. Condensing specific anyons on these interfaces leads to dualities between TQFTs. The work focuses on the c=24 holomorphic theories classified by Schellekens, uncovering new dualities, some involving non-abelian anyons and non-invertible symmetries. The findings generalize beyond c=24, including a duality between Spin(n^2)_2 and a twisted dihedral group gauge theory. The paper also identifies a sequence of holomorphic CFTs at c=2(k-1) with Spin(k)_2 fusion category symmetry.
Reference

The paper discovers novel sporadic dualities, some of which involve condensation of anyons with non-abelian statistics, i.e. gauging non-invertible one-form global symmetries.

Geometric Approach to Quantum Mechanics

Published:Dec 30, 2025 00:48
1 min read
ArXiv

Analysis

This paper offers a geometric perspective on one-dimensional quantum mechanics, using the framework of De Haro's Geometric View of Theories. It clarifies the relationship between position and momentum representations as different trivializations of a Hilbert bundle, and the Fourier transform as a transition function. The analysis extends to the circle, incorporating twisted boundary conditions and connections. This approach provides a novel way to understand quantum mechanical representations and dualities.
Reference

The paper demonstrates how the Geometric View organizes quantum-mechanical representations and dualities in geometric terms.

Gauge Theories and Many-Body Systems: Lecture Overview

Published:Dec 28, 2025 22:37
1 min read
ArXiv

Analysis

This paper provides a high-level overview of two key correspondences between gauge theories and integrable many-body systems. It highlights the historical context, mentioning work from the 1980s-1990s and the mid-1990s. The paper's significance lies in its potential to connect seemingly disparate fields, offering new perspectives and solution methods by leveraging dualities and transformations. The abstract suggests a focus on mathematical and physical relationships, potentially offering insights into quantization and the interplay between classical and quantum systems.
Reference

The paper discusses two correspondences: one based on Hamiltonian reduction and its quantum counterpart, and another involving non-trivial dualities like Fourier and Legendre transforms.

Research#Algebra🔬 ResearchAnalyzed: Jan 10, 2026 07:11

Novel Duality Relations in Prime Ideals Unveiled

Published:Dec 26, 2025 19:09
1 min read
ArXiv

Analysis

This article likely presents new mathematical findings, potentially contributing to algebraic number theory or related fields. The research may offer new insights into the structure and relationships within prime ideals, a fundamental concept in abstract algebra.
Reference

The article's key content focuses on higher-order dualities between prime ideals.