Search:
Match:
5 results

Analysis

This paper investigates the effects of localized shear stress on epithelial cell behavior, a crucial aspect of understanding tissue mechanics. The study's significance lies in its mesoscopic approach, bridging the gap between micro- and macro-scale analyses. The findings highlight how mechanical perturbations can propagate through tissues, influencing cell dynamics and potentially impacting tissue function. The use of a novel mesoscopic probe to apply local shear is a key methodological advancement.
Reference

Localized shear propagated way beyond immediate neighbors and suppressed cellular migratory dynamics in stiffer layers.

Analysis

This paper presents the first application of Positronium Lifetime Imaging (PLI) using the radionuclides Mn-52 and Co-55 with a plastic-based PET scanner (J-PET). The study validates the PLI method by comparing results with certified reference materials and explores its application in human tissues. The work is significant because it expands the capabilities of PET imaging by providing information about tissue molecular architecture, potentially leading to new diagnostic tools. The comparison of different isotopes and the analysis of their performance is also valuable for future PLI studies.
Reference

The measured values of $τ_{ ext{oPs}}$ in polycarbonate using both isotopes matches well with the certified reference values.

Analysis

This paper provides a rigorous mathematical framework for understanding the nonlinear and time-dependent conductivity observed in electropermeabilization of biological tissues. It bridges the gap between cell-level models and macroscopic behavior, offering a theoretical explanation for experimental observations of conductivity dynamics. The use of homogenization techniques and two-scale convergence is significant.
Reference

The resulting macroscopic model exhibits memory effects and a nonlinear, time-dependent effective current.

Analysis

This paper investigates the mechanical behavior of epithelial tissues, crucial for understanding tissue morphogenesis. It uses a computational approach (vertex simulations and a multiscale model) to explore how cellular topological transitions lead to necking, a localized deformation. The study's significance lies in its potential to explain how tissues deform under stress and how defects influence this process, offering insights into biological processes.
Reference

The study finds that necking bifurcation arises from cellular topological transitions and that topological defects influence the process.

Research#llm🔬 ResearchAnalyzed: Jan 4, 2026 10:17

Vertex Model Mechanics Explain the Emergence of Centroidal Voronoi Tiling in Epithelia

Published:Dec 15, 2025 09:15
1 min read
ArXiv

Analysis

This article likely discusses a research paper that uses vertex models to understand the formation of Centroidal Voronoi Tiling (CVT) patterns in epithelial tissues. The focus is on the mechanical forces and cellular interactions that lead to this specific geometric arrangement. The source, ArXiv, indicates this is a pre-print or published research paper.

Key Takeaways

    Reference