Search:
Match:
4 results

Analysis

This paper presents a novel computational framework to bridge the gap between atomistic simulations and device-scale modeling for battery electrode materials. The methodology, applied to sodium manganese hexacyanoferrate, demonstrates the ability to predict key performance characteristics like voltage, volume expansion, and diffusivity, ultimately enabling a more rational design process for next-generation battery materials. The use of machine learning and multiscale simulations is a significant advancement.
Reference

The resulting machine learning interatomic potential accurately reproduces experimental properties including volume expansion, operating voltage, and sodium concentration-dependent structural transformations, while revealing a four-order-of-magnitude difference in sodium diffusivity between the rhombohedral (sodium-rich) and tetragonal (sodium-poor) phases at 300 K.

3D Serrated Trailing-Edge Noise Model

Published:Dec 29, 2025 16:53
1 min read
ArXiv

Analysis

This paper presents a semi-analytical model for predicting turbulent boundary layer trailing edge noise from serrated edges. The model leverages the Wiener-Hopf technique to account for 3D source and propagation effects, offering a significant speed-up compared to previous 3D models. This is important for efficient optimization of serration shapes in real-world applications like aircraft noise reduction.
Reference

The model successfully captures the far-field 1/r decay in noise amplitudes and the correct dipolar behaviour at upstream angles.

Analysis

This paper presents a significant advancement in reconfigurable photonic topological insulators (PTIs). The key innovation is the use of antimony triselenide (Sb2Se3), a low-loss phase-change material (PCM), integrated into a silicon-based 2D PTI. This overcomes the absorption limitations of previous GST-based devices, enabling high Q-factors and paving the way for practical, low-loss, tunable topological photonic devices. The submicron-scale patterning of Sb2Se3 is also a notable achievement.
Reference

“Owing to the transparency of Sb2Se3 in both its amorphous and crystalline states, a high Q-factor on the order of 10^3 is preserved-representing nearly an order-of-magnitude improvement over previous GST-based devices.”

Analysis

This paper addresses the computational challenges of detecting Mini-Extreme-Mass-Ratio Inspirals (mini-EMRIs) using ground-based gravitational wave detectors. The authors develop a new method, ΣTrack, that overcomes limitations of existing semi-coherent methods by accounting for spectral leakage and optimizing coherence time. This is crucial for detecting signals that evolve in frequency over time, potentially allowing for the discovery of exotic compact objects and probing the early universe.
Reference

The ΣR statistic, a novel detection metric, effectively recovers signal energy dispersed across adjacent frequency bins, leading to an order-of-magnitude enhancement in the effective detection volume.