Search:
Match:
2 results

Analysis

This paper presents a novel computational framework to bridge the gap between atomistic simulations and device-scale modeling for battery electrode materials. The methodology, applied to sodium manganese hexacyanoferrate, demonstrates the ability to predict key performance characteristics like voltage, volume expansion, and diffusivity, ultimately enabling a more rational design process for next-generation battery materials. The use of machine learning and multiscale simulations is a significant advancement.
Reference

The resulting machine learning interatomic potential accurately reproduces experimental properties including volume expansion, operating voltage, and sodium concentration-dependent structural transformations, while revealing a four-order-of-magnitude difference in sodium diffusivity between the rhombohedral (sodium-rich) and tetragonal (sodium-poor) phases at 300 K.

Analysis

This paper investigates how the coating of micro-particles with amphiphilic lipids affects the release of hydrophilic solutes. The study uses in vivo experiments in mice to compare coated and uncoated formulations, demonstrating that the coating reduces interfacial diffusivity and broadens the release-time distribution. This is significant for designing controlled-release drug delivery systems.
Reference

Late time levels are enhanced for the coated particles, implying a reduced effective interfacial diffusivity and a broadened release-time distribution.