Search:
Match:
6 results

Proof of Fourier Extension Conjecture for Paraboloid

Published:Dec 31, 2025 17:36
1 min read
ArXiv

Analysis

This paper provides a proof of the Fourier extension conjecture for the paraboloid in dimensions greater than 2. The authors leverage a decomposition technique and trilinear equivalences to tackle the problem. The core of the proof involves converting a complex exponential sum into an oscillatory integral, enabling localization on the Fourier side. The paper extends the argument to higher dimensions using bilinear analogues.
Reference

The trilinear equivalence only requires an averaging over grids, which converts a difficult exponential sum into an oscillatory integral with periodic amplitude.

Electron Gas Behavior in Mean-Field Regime

Published:Dec 31, 2025 06:38
1 min read
ArXiv

Analysis

This paper investigates the momentum distribution of an electron gas, providing mean-field analogues of existing formulas and extending the analysis to a broader class of potentials. It connects to and validates recent independent findings.
Reference

The paper obtains mean-field analogues of momentum distribution formulas for electron gas in high density and metallic density limits, and applies to a general class of singular potentials.

Polynomial Functors over Free Nilpotent Groups

Published:Dec 30, 2025 07:45
1 min read
ArXiv

Analysis

This paper investigates polynomial functors, a concept in category theory, applied to free nilpotent groups. It refines existing results, particularly for groups of nilpotency class 2, and explores modular analogues. The paper's significance lies in its contribution to understanding the structure of these mathematical objects and establishing general criteria for comparing polynomial functors across different degrees and base categories. The investigation of analytic functors and the absence of a specific ideal further expands the scope of the research.
Reference

The paper establishes general criteria that guarantee equivalences between the categories of polynomial functors of different degrees or with different base categories.

Complexity of Non-Classical Logics via Fragments

Published:Dec 29, 2025 14:47
1 min read
ArXiv

Analysis

This paper explores the computational complexity of non-classical logics (superintuitionistic and modal) by demonstrating polynomial-time reductions to simpler fragments. This is significant because it allows for the analysis of complex logical systems by studying their more manageable subsets. The findings provide new complexity bounds and insights into the limitations of these reductions, contributing to a deeper understanding of these logics.
Reference

Propositional logics are usually polynomial-time reducible to their fragments with at most two variables (often to the one-variable or even variable-free fragments).

Analysis

This paper explores a fascinating connection between classical fluid mechanics and quantum/relativistic theories. It proposes a model where the behavior of Euler-Korteweg vortices, under specific conditions and with the inclusion of capillary stress, can be described by equations analogous to the Schrödinger and Klein-Gordon equations. This suggests a potential for understanding quantum phenomena through a classical framework, challenging the fundamental postulates of quantum mechanics. The paper's significance lies in its exploration of alternative mathematical formalisms and its potential to bridge the gap between classical and quantum physics.
Reference

The model yields classical analogues to de Broglie wavelength, the Einstein-Planck relation, the Born rule and the uncertainty principle.

Analysis

This paper presents a new numerical framework for modeling autophoretic microswimmers, which are synthetic analogues of biological microswimmers. The framework addresses the challenge of modeling these systems by solving the coupled advection-diffusion-Stokes equations using a high-accuracy pseudospectral method. The model captures complex behaviors like disordered swimming and chemotactic interactions, and is validated against experimental data. This work is significant because it provides a robust tool for studying these complex systems and understanding their emergent behaviors.
Reference

The framework employs a high-accuracy pseudospectral method to solve the fully coupled advection diffusion Stokes equations, without prescribing any slip velocity model.