Search:
Match:
6 results

Analysis

This paper introduces an improved method (RBSOG with RBL) for accelerating molecular dynamics simulations of Born-Mayer-Huggins (BMH) systems, which are commonly used to model ionic materials. The method addresses the computational bottlenecks associated with long-range Coulomb interactions and short-range forces by combining a sum-of-Gaussians (SOG) decomposition, importance sampling, and a random batch list (RBL) scheme. The results demonstrate significant speedups and reduced memory usage compared to existing methods, making large-scale simulations more feasible.
Reference

The method achieves approximately $4\sim10 imes$ and $2 imes$ speedups while using $1000$ cores, respectively, under the same level of structural and thermodynamic accuracy and with a reduced memory usage.

Electron Gas Behavior in Mean-Field Regime

Published:Dec 31, 2025 06:38
1 min read
ArXiv

Analysis

This paper investigates the momentum distribution of an electron gas, providing mean-field analogues of existing formulas and extending the analysis to a broader class of potentials. It connects to and validates recent independent findings.
Reference

The paper obtains mean-field analogues of momentum distribution formulas for electron gas in high density and metallic density limits, and applies to a general class of singular potentials.

Analysis

This paper introduces "X-ray Coulomb Counting" as a method to gain a deeper understanding of electrochemical systems, crucial for sustainable energy. It addresses the limitations of traditional electrochemical measurements by providing a way to quantify charge transfer in specific reactions. The examples from Li-ion battery research highlight the practical application and potential impact on materials and device development.
Reference

The paper introduces explicitly the concept of "X-ray Coulomb Counting" in which X-ray methods are used to quantify on an absolute scale how much charge is transferred into which reactions during the electrochemical measurements.

Analysis

This paper explores the Coulomb branch of 3D N=4 gauge theories, focusing on those with noncotangent matter representations. It addresses challenges like parity anomalies and boundary condition compatibility to derive the Coulomb branch operator algebra. The work provides a framework for understanding the quantization of the Coulomb branch and calculating correlators, with applications to specific gauge theories.
Reference

The paper derives generators and relations of the Coulomb branch operator algebra for specific SU(2) theories and analyzes theories with a specific Coulomb branch structure.

Analysis

This paper reviews recent theoretical advancements in understanding the charge dynamics of doped carriers in high-temperature cuprate superconductors. It highlights the importance of strong electronic correlations, layered crystal structure, and long-range Coulomb interaction in governing the collective behavior of these carriers. The paper focuses on acoustic-like plasmons, charge order tendencies, and the challenges in reconciling experimental observations across different cuprate systems. It's significant because it synthesizes recent progress and identifies open questions in a complex field.
Reference

The emergence of acousticlike plasmons has been firmly established through quantitative analyses of resonant inelastic x-ray scattering (RIXS) spectra based on the t-J-V model.

Physics#Superconductivity🔬 ResearchAnalyzed: Jan 3, 2026 23:57

Long-Range Coulomb Interaction in Cuprate Superconductors

Published:Dec 26, 2025 05:03
1 min read
ArXiv

Analysis

This review paper highlights the importance of long-range Coulomb interactions in understanding the charge dynamics of cuprate superconductors, moving beyond the standard Hubbard model. It uses the layered t-J-V model to explain experimental observations from resonant inelastic x-ray scattering. The paper's significance lies in its potential to explain the pseudogap, the behavior of quasiparticles, and the higher critical temperatures in multi-layer cuprate superconductors. It also discusses the role of screened Coulomb interaction in the spin-fluctuation mechanism of superconductivity.
Reference

The paper argues that accurately describing plasmonic effects requires a three-dimensional theoretical approach and that the screened Coulomb interaction is important in the spin-fluctuation mechanism to realize high-Tc superconductivity.