Search:
Match:
1 results

Analysis

This paper explores a fascinating connection between classical fluid mechanics and quantum/relativistic theories. It proposes a model where the behavior of Euler-Korteweg vortices, under specific conditions and with the inclusion of capillary stress, can be described by equations analogous to the Schrödinger and Klein-Gordon equations. This suggests a potential for understanding quantum phenomena through a classical framework, challenging the fundamental postulates of quantum mechanics. The paper's significance lies in its exploration of alternative mathematical formalisms and its potential to bridge the gap between classical and quantum physics.
Reference

The model yields classical analogues to de Broglie wavelength, the Einstein-Planck relation, the Born rule and the uncertainty principle.