Search:
Match:
4 results

Analysis

This paper investigates the behavior of collective excitations (Higgs and Nambu-Goldstone modes) in a specific spin model with long-range interactions. The focus is on understanding the damping rate of the Higgs mode near a quantum phase transition, particularly relevant for Rydberg-atom experiments. The study's significance lies in providing theoretical insights into the dynamics of these modes and suggesting experimental probes.
Reference

The paper finds that the damping of the Higgs mode is significantly suppressed by the long-range interaction and proposes experimental methods for probing the Higgs mode in Rydberg-atom experiments.

Anisotropic Quantum Annealing Advantage

Published:Dec 29, 2025 13:53
1 min read
ArXiv

Analysis

This paper investigates the performance of quantum annealing using spin-1 systems with a single-ion anisotropy term. It argues that this approach can lead to higher fidelity in finding the ground state compared to traditional spin-1/2 systems. The key is the ability to traverse the energy landscape more smoothly, lowering barriers and stabilizing the evolution, particularly beneficial for problems with ternary decision variables.
Reference

For a suitable range of the anisotropy strength D, the spin-1 annealer reaches the ground state with higher fidelity.

Analysis

This paper investigates the stability of an anomalous chiral spin liquid (CSL) in a periodically driven quantum spin-1/2 system on a square lattice. It explores the effects of frequency detuning, the deviation from the ideal driving frequency, on the CSL's properties. The study uses numerical methods to analyze the Floquet quasi-energy spectrum and identify different regimes as the detuning increases, revealing insights into the transition between different phases and the potential for a long-lived prethermal anomalous CSL. The work is significant for understanding the robustness and behavior of exotic quantum phases under realistic experimental conditions.
Reference

The analysis of all the data suggests that the anomalous CSL is not continuously connected to the high-frequency CSL.

Analysis

This paper investigates the magnetic properties of the quantum antiferromagnet CsFeCl3 under high magnetic fields and pressures. It combines experimental and theoretical approaches to reveal a complex magnetization process, including a metamagnetic transition. The key finding is the emergence of three-body interactions, which are crucial for understanding the observed fractional steps in magnetization at high fields. This challenges conventional spin models and opens possibilities for exploring exotic phases in quantum magnets.
Reference

The high-field regime requires a new perspective, which we provide through a projected spin-1/2 framework built from Zeeman-selected crystal-field states not related by time reversal. This construction naturally allows emergent three-body interactions on triangular plaquettes and explains the asymmetric evolution of the fractional steps in the magnetization.