Search:
Match:
5 results

Capacity-Time Trade-off in Quantum Memory

Published:Dec 30, 2025 14:14
1 min read
ArXiv

Analysis

This paper addresses a critical challenge in quantum memory: the limitations imposed by real-world imperfections like disordered coupling and detuning. It moves beyond separate analyses of these factors to provide a comprehensive model that considers their correlated effects. The key contribution is identifying a fundamental trade-off between storage capacity, storage time, and driving time, setting a universal limit for reliable storage. The paper's relevance lies in its potential to guide the design and optimization of quantum memory devices by highlighting the interplay of various imperfections.
Reference

The paper identifies a fundamental trade-off among storage capacity, storage time, and driving time, setting a universal limit for reliable storage.

Analysis

This paper is significant because it provides high-resolution imaging of exciton-polariton (EP) transport and relaxation in halide perovskites, a promising material for next-generation photonic devices. The study uses energy-resolved transient reflectance microscopy to directly observe quasi-ballistic transport and ultrafast relaxation, revealing key insights into EP behavior and offering guidance for device optimization. The ability to manipulate EP properties by tuning the detuning parameter is a crucial finding.
Reference

The study reveals diffusion as fast as ~490 cm2/s and a relaxation time of ~95.1 fs.

Cavity-Free Microwave Sensing with CPT

Published:Dec 29, 2025 14:12
1 min read
ArXiv

Analysis

This paper explores a novel approach to microwave sensing using a cavity-free atomic system. The key innovation is the use of a Δ-type configuration, which allows for strong sensitivity to microwave field parameters without the constraints of a cavity. This could lead to more compact and robust atomic clocks and quantum sensors.
Reference

The coherent population trapping (CPT) resonance exhibits a pronounced dependence on the microwave power and detuning, resulting in measurable changes in resonance contrast, linewidth, and center frequency.

Analysis

This paper investigates the stability of an anomalous chiral spin liquid (CSL) in a periodically driven quantum spin-1/2 system on a square lattice. It explores the effects of frequency detuning, the deviation from the ideal driving frequency, on the CSL's properties. The study uses numerical methods to analyze the Floquet quasi-energy spectrum and identify different regimes as the detuning increases, revealing insights into the transition between different phases and the potential for a long-lived prethermal anomalous CSL. The work is significant for understanding the robustness and behavior of exotic quantum phases under realistic experimental conditions.
Reference

The analysis of all the data suggests that the anomalous CSL is not continuously connected to the high-frequency CSL.

Analysis

This paper investigates the behavior of a three-level atom under the influence of both a strong coherent laser and a weak stochastic field. The key contribution is demonstrating that the stochastic field, representing realistic laser noise, can be used as a control parameter to manipulate the atom's emission characteristics. This has implications for quantum control and related technologies.
Reference

By detuning the stochastic-field central frequency relative to the coherent drive (especially for narrow bandwidths), we observe pronounced changes in emission characteristics, including selective enhancement or suppression, and reshaping of the multi-peaked fluorescence spectrum when the detuning matches the generalized Rabi frequency.