Search:
Match:
2 results

Analysis

This paper challenges the conventional assumption of independence in spatially resolved detection within diffusion-coupled thermal atomic vapors. It introduces a field-theoretic framework where sub-ensemble correlations are governed by a global spin-fluctuation field's spatiotemporal covariance. This leads to a new understanding of statistical independence and a limit on the number of distinguishable sub-ensembles, with implications for multi-channel atomic magnetometry and other diffusion-coupled stochastic fields.
Reference

Sub-ensemble correlations are determined by the covariance operator, inducing a natural geometry in which statistical independence corresponds to orthogonality of the measurement functionals.

Physics#Superconductivity🔬 ResearchAnalyzed: Jan 3, 2026 23:57

Long-Range Coulomb Interaction in Cuprate Superconductors

Published:Dec 26, 2025 05:03
1 min read
ArXiv

Analysis

This review paper highlights the importance of long-range Coulomb interactions in understanding the charge dynamics of cuprate superconductors, moving beyond the standard Hubbard model. It uses the layered t-J-V model to explain experimental observations from resonant inelastic x-ray scattering. The paper's significance lies in its potential to explain the pseudogap, the behavior of quasiparticles, and the higher critical temperatures in multi-layer cuprate superconductors. It also discusses the role of screened Coulomb interaction in the spin-fluctuation mechanism of superconductivity.
Reference

The paper argues that accurately describing plasmonic effects requires a three-dimensional theoretical approach and that the screened Coulomb interaction is important in the spin-fluctuation mechanism to realize high-Tc superconductivity.