Search:
Match:
2 results

Analysis

This paper investigates the temperature and field-dependent behavior of skyrmions in synthetic ferrimagnetic multilayers, specifically Co/Gd heterostructures. It's significant because it explores a promising platform for topological spintronics, offering tunable magnetic properties and addressing limitations of other magnetic structures. The research provides insights into the interplay of magnetic interactions that control skyrmion stability and offers a pathway for engineering heterostructures for spintronic applications.
Reference

The paper demonstrates the stabilization of 70 nm-radius skyrmions at room temperature and reveals how the Co and Gd sublattices influence the temperature-dependent net magnetization.

Ligand Shift Impact on Heisenberg Exchange and Spin Dynamics

Published:Dec 26, 2025 18:34
1 min read
ArXiv

Analysis

This paper explores a refinement to the understanding of the Heisenberg exchange interaction, a fundamental force in magnetism. It proposes that the position of nonmagnetic ions (ligands) between magnetic ions can influence the symmetric Heisenberg exchange, leading to new terms in the energy density and impacting spin wave behavior. This has implications for understanding and modeling magnetic materials, particularly antiferromagnets and ferrimagnets, and could be relevant for spintronics applications.
Reference

The paper suggests that the ligand shift can give contribution in the constant of the symmetric Heisenberg interaction in antiferromagnetic or ferrimagnetic materials.