Search:
Match:
8 results
research#physics🔬 ResearchAnalyzed: Jan 4, 2026 06:48

Topological spin textures in an antiferromagnetic monolayer

Published:Dec 30, 2025 12:40
1 min read
ArXiv

Analysis

This article reports on research concerning topological spin textures within a specific material. The focus is on antiferromagnetic monolayers, suggesting an investigation into the fundamental properties of magnetism at the nanoscale. The use of 'topological' implies the study of robust, geometrically-defined spin configurations, potentially with implications for spintronics or novel magnetic devices. The source, ArXiv, indicates this is a pre-print or research paper, suggesting a high level of technical detail and a focus on scientific discovery.
Reference

Analysis

This paper identifies a family of multiferroic materials (wurtzite MnX) that could be used to create electrically controllable spin-based devices. The research highlights the potential of these materials for altermagnetic spintronics, where spin splitting can be controlled by ferroelectric polarization. The discovery of a g-wave altermagnetic state and the ability to reverse spin splitting through polarization switching are significant advancements.
Reference

Cr doping drives a transition to an A-type AFM phase that breaks Kramers spin degeneracy and realizes a g-wave altermagnetic state with large nonrelativistic spin splitting near the Fermi level. Importantly, this spin splitting can be deterministically reversed by polarization switching, enabling electric-field control of altermagnetic electronic structure without reorienting the Neel vector or relying on spin-orbit coupling.

Analysis

This article reports on research related to the manipulation of antiferromagnetic materials using terahertz radiation and spin-orbit torques. The focus is on switching the magnetic order, which has implications for faster and more energy-efficient data storage and processing. The use of terahertz frequencies suggests potential for high-speed operation.
Reference

Analysis

This paper investigates the impact of Cerium (Ce) substitution on the magnetic and vibrational properties of Samarium Chromite (SmCrO3) perovskites. The study reveals how Ce substitution alters the magnetic structure, leading to a coexistence of antiferromagnetic and weak ferromagnetic states, enhanced coercive field, and exchange bias. The authors highlight the role of spin-phonon coupling and lattice distortions in these changes, suggesting potential for spintronic applications.
Reference

Ce$^{3+}$ substitution at Sm$^{3+}$ sites transform the weak ferromagnetic (FM) $Γ_4$ state into robust AFM $Γ_1$ configuration through a gradual crossover.

Ligand Shift Impact on Heisenberg Exchange and Spin Dynamics

Published:Dec 26, 2025 18:34
1 min read
ArXiv

Analysis

This paper explores a refinement to the understanding of the Heisenberg exchange interaction, a fundamental force in magnetism. It proposes that the position of nonmagnetic ions (ligands) between magnetic ions can influence the symmetric Heisenberg exchange, leading to new terms in the energy density and impacting spin wave behavior. This has implications for understanding and modeling magnetic materials, particularly antiferromagnets and ferrimagnets, and could be relevant for spintronics applications.
Reference

The paper suggests that the ligand shift can give contribution in the constant of the symmetric Heisenberg interaction in antiferromagnetic or ferrimagnetic materials.

Physics#Magnetism🔬 ResearchAnalyzed: Jan 3, 2026 20:19

High-Field Magnetism and Transport in TbAgAl

Published:Dec 26, 2025 11:43
1 min read
ArXiv

Analysis

This paper investigates the magnetic properties of the TbAgAl compound under high magnetic fields. The study extends magnetization measurements to 12 Tesla and resistivity measurements to 9 Tesla, revealing a complex magnetic state. The key finding is the observation of a disordered magnetic state with both ferromagnetic and antiferromagnetic exchange interactions, unlike other compounds in the RAgAl series. This is attributed to competing interactions and the layered structure of the compound.
Reference

The field dependence of magnetization at low temperatures suggests an antiferromagnetic state undergoing a metamagnetic transition to a ferromagnetic state above the critical field.

Analysis

This paper investigates the electronic, magnetic, and topological properties of layered pnictides EuMnXBi2 (X = Mn, Fe, Co, Zn) using density functional theory (DFT). It highlights the potential of these materials, particularly the Bi-based compounds, for exploring tunable magnetic and topological phases. The study demonstrates how spin-orbit coupling, chemical substitution, and electron correlations can be used to engineer these phases, opening avenues for exploring a wide range of electronic and magnetic phenomena.
Reference

EuMn2Bi2 stabilizes in a C-type antiferromagnetic ground state with a narrow-gap semiconducting character. Inclusion of spin-orbit coupling (SOC) drives a transition from this trivial antiferromagnetic semiconductor to a Weyl semimetal hosting four symmetry-related Weyl points and robust Fermi arc states.

Analysis

This research explores the relationship between stoichiometry and magnetic properties in a specific material. The study investigates how varying the iron concentration influences the structural order and antiferromagnetic behavior of Fe_xNbSe2.
Reference

The study focuses on Fe_xNbSe2 where 0.05 <= x <= 0.38.