Search:
Match:
2 results

Abundance Stratification in Type Iax SN 2020rea

Published:Dec 30, 2025 13:03
1 min read
ArXiv

Analysis

This paper uses radiative transfer modeling to analyze the spectral evolution of Type Iax supernova 2020rea. The key finding is that the supernova's ejecta show stratified, velocity-dependent abundances at early times, transitioning to a more homogeneous composition later. This challenges existing pure deflagration models and suggests a need for further investigation into the origin and spectral properties of Type Iax supernovae.
Reference

The ejecta transition from a layered to a more homogeneous composition.

Bright Type Iax Supernova SN 2022eyw Analyzed

Published:Dec 29, 2025 12:47
1 min read
ArXiv

Analysis

This paper provides detailed observations and analysis of a bright Type Iax supernova, SN 2022eyw. It contributes to our understanding of the explosion mechanisms of these supernovae, which are thought to be caused by the partial deflagration of white dwarfs. The study uses photometric and spectroscopic data, along with spectral modeling, to determine properties like the mass of synthesized nickel, ejecta mass, and kinetic energy. The findings support the pure deflagration model for luminous Iax supernovae.
Reference

The bolometric light curve indicates a synthesized $^{56}$Ni mass of $0.120\pm0.003~ ext{M}_{\odot}$, with an estimated ejecta mass of $0.79\pm0.09~ ext{M}_{\odot}$ and kinetic energy of $0.19 imes10^{51}$ erg.