Search:
Match:
2 results

Analysis

This paper identifies a family of multiferroic materials (wurtzite MnX) that could be used to create electrically controllable spin-based devices. The research highlights the potential of these materials for altermagnetic spintronics, where spin splitting can be controlled by ferroelectric polarization. The discovery of a g-wave altermagnetic state and the ability to reverse spin splitting through polarization switching are significant advancements.
Reference

Cr doping drives a transition to an A-type AFM phase that breaks Kramers spin degeneracy and realizes a g-wave altermagnetic state with large nonrelativistic spin splitting near the Fermi level. Importantly, this spin splitting can be deterministically reversed by polarization switching, enabling electric-field control of altermagnetic electronic structure without reorienting the Neel vector or relying on spin-orbit coupling.

Analysis

This paper investigates the electronic, magnetic, and topological properties of layered pnictides EuMnXBi2 (X = Mn, Fe, Co, Zn) using density functional theory (DFT). It highlights the potential of these materials, particularly the Bi-based compounds, for exploring tunable magnetic and topological phases. The study demonstrates how spin-orbit coupling, chemical substitution, and electron correlations can be used to engineer these phases, opening avenues for exploring a wide range of electronic and magnetic phenomena.
Reference

EuMn2Bi2 stabilizes in a C-type antiferromagnetic ground state with a narrow-gap semiconducting character. Inclusion of spin-orbit coupling (SOC) drives a transition from this trivial antiferromagnetic semiconductor to a Weyl semimetal hosting four symmetry-related Weyl points and robust Fermi arc states.