Search:
Match:
30 results

Thin Tree Verification is coNP-Complete

Published:Dec 31, 2025 18:38
1 min read
ArXiv

Analysis

This paper addresses the computational complexity of verifying the 'thinness' of a spanning tree in a graph. The Thin Tree Conjecture is a significant open problem in graph theory, and the ability to efficiently construct thin trees has implications for approximation algorithms for problems like the asymmetric traveling salesman problem (ATSP). The paper's key contribution is proving that verifying the thinness of a tree is coNP-hard, meaning it's likely computationally difficult to determine if a given tree meets the thinness criteria. This result has implications for the development of algorithms related to the Thin Tree Conjecture and related optimization problems.
Reference

The paper proves that determining the thinness of a tree is coNP-hard.

Analysis

This paper explores the intersection of numerical analysis and spectral geometry, focusing on how geometric properties influence operator spectra and the computational methods used to approximate them. It highlights the use of numerical methods in spectral geometry for both conjecture formulation and proof strategies, emphasizing the need for accuracy, efficiency, and rigorous error control. The paper also discusses how the demands of spectral geometry drive new developments in numerical analysis.
Reference

The paper revisits the process of eigenvalue approximation from the perspective of computational spectral geometry.

Proof of Fourier Extension Conjecture for Paraboloid

Published:Dec 31, 2025 17:36
1 min read
ArXiv

Analysis

This paper provides a proof of the Fourier extension conjecture for the paraboloid in dimensions greater than 2. The authors leverage a decomposition technique and trilinear equivalences to tackle the problem. The core of the proof involves converting a complex exponential sum into an oscillatory integral, enabling localization on the Fourier side. The paper extends the argument to higher dimensions using bilinear analogues.
Reference

The trilinear equivalence only requires an averaging over grids, which converts a difficult exponential sum into an oscillatory integral with periodic amplitude.

Polynomial Chromatic Bound for $P_5$-Free Graphs

Published:Dec 31, 2025 15:05
1 min read
ArXiv

Analysis

This paper resolves a long-standing open problem in graph theory, specifically Gyárfás's conjecture from 1985, by proving a polynomial bound on the chromatic number of $P_5$-free graphs. This is a significant advancement because it provides a tighter upper bound on the chromatic number based on the clique number, which is a fundamental property of graphs. The result has implications for understanding the structure and coloring properties of graphs that exclude specific induced subgraphs.
Reference

The paper proves that the chromatic number of $P_5$-free graphs is at most a polynomial function of the clique number.

Analysis

This paper investigates the maximum number of touching pairs in a packing of congruent circles in the hyperbolic plane. It provides upper and lower bounds for this number, extending previous work on Euclidean and specific hyperbolic tilings. The results are relevant to understanding the geometric properties of circle packings in non-Euclidean spaces and have implications for optimization problems in these spaces.
Reference

The paper proves that for certain values of the circle diameter, the number of touching pairs is less than that from a specific spiral construction, which is conjectured to be extremal.

Structure of Twisted Jacquet Modules for GL(2n)

Published:Dec 31, 2025 09:11
1 min read
ArXiv

Analysis

This paper investigates the structure of twisted Jacquet modules of principal series representations of GL(2n) over a local or finite field. Understanding these modules is crucial for classifying representations and studying their properties, particularly in the context of non-generic representations and Shalika models. The paper's contribution lies in providing a detailed description of the module's structure, conditions for its non-vanishing, and applications to specific representation types. The connection to Prasad's conjecture suggests broader implications for representation theory.
Reference

The paper describes the structure of the twisted Jacquet module π_{N,ψ} of π with respect to N and a non-degenerate character ψ of N.

Small 3-fold Blocking Sets in PG(2,p^n)

Published:Dec 31, 2025 07:48
1 min read
ArXiv

Analysis

This paper addresses the open problem of constructing small t-fold blocking sets in the finite Desarguesian plane PG(2,p^n), specifically focusing on the case of 3-fold blocking sets. The construction of such sets is important for understanding the structure of finite projective planes and has implications for related combinatorial problems. The paper's contribution lies in providing a construction that achieves the conjectured minimum size for 3-fold blocking sets when n is odd, a previously unsolved problem.
Reference

The paper constructs 3-fold blocking sets of conjectured size, obtained as the disjoint union of three linear blocking sets of Rédei type, and they lie on the same orbit of the projectivity (x:y:z)↦(z:x:y).

Analysis

This paper revisits and improves upon the author's student work on Dejean's conjecture, focusing on the construction of threshold words (TWs) and circular TWs. It highlights the use of computer verification and introduces methods for constructing stronger TWs with specific properties. The paper's significance lies in its contribution to the understanding and proof of Dejean's conjecture, particularly for specific cases, and its exploration of new TW construction techniques.
Reference

The paper presents an edited version of the author's student works (diplomas of 2011 and 2013) with some improvements, focusing on circular TWs and stronger TWs.

Analysis

This paper provides a complete classification of ancient, asymptotically cylindrical mean curvature flows, resolving the Mean Convex Neighborhood Conjecture. The results have implications for understanding the behavior of these flows near singularities, offering a deeper understanding of geometric evolution equations. The paper's independence from prior work and self-contained nature make it a significant contribution to the field.
Reference

The paper proves that any ancient, asymptotically cylindrical flow is non-collapsed, convex, rotationally symmetric, and belongs to one of three canonical families: ancient ovals, the bowl soliton, or the flying wing translating solitons.

Analysis

This survey paper synthesizes recent advancements in the study of complex algebraic varieties, focusing on the Shafarevich conjecture and its connections to hyperbolicity, non-abelian Hodge theory, and the topology of these varieties. It's significant because it provides a comprehensive overview of the interplay between these complex mathematical concepts, potentially offering insights into the structure and properties of these geometric objects. The paper's value lies in its ability to connect seemingly disparate areas of mathematics.
Reference

The paper presents the main ideas and techniques involved in the linear versions of several conjectures, including the Shafarevich conjecture and Kollár's conjecture.

Characterizing Diagonal Unitary Covariant Superchannels

Published:Dec 30, 2025 18:08
1 min read
ArXiv

Analysis

This paper provides a complete characterization of diagonal unitary covariant (DU-covariant) superchannels, which are higher-order transformations that map quantum channels to themselves. This is significant because it offers a framework for analyzing symmetry-restricted higher-order quantum processes and potentially sheds light on open problems like the PPT$^2$ conjecture. The work unifies and extends existing families of covariant quantum channels, providing a practical tool for researchers.
Reference

Necessary and sufficient conditions for complete positivity and trace preservation are derived and the canonical decomposition describing DU-covariant superchannels is provided.

Analysis

This paper explores the $k$-Plancherel measure, a generalization of the Plancherel measure, using a finite Markov chain. It investigates the behavior of this measure as the parameter $k$ and the size $n$ of the partitions change. The study is motivated by the connection to $k$-Schur functions and the convergence to the Plancherel measure. The paper's significance lies in its exploration of a new growth process and its potential to reveal insights into the limiting behavior of $k$-bounded partitions.
Reference

The paper initiates the study of these processes, state some theorems and several intriguing conjectures found by computations of the finite Markov chain.

Analysis

This paper addresses long-standing conjectures about lower bounds for Betti numbers in commutative algebra. It reframes these conjectures as arithmetic problems within the Boij-Söderberg cone, using number-theoretic methods to prove new cases, particularly for Gorenstein algebras in codimensions five and six. The approach connects commutative algebra with Diophantine equations, offering a novel perspective on these classical problems.
Reference

Using number-theoretic methods, we completely classify these obstructions in the codimension three case revealing some delicate connections between Betti tables, commutative algebra and classical Diophantine equations.

Notes on the 33-point Erdős--Szekeres Problem

Published:Dec 30, 2025 08:10
1 min read
ArXiv

Analysis

This paper addresses the open problem of determining ES(7) in the Erdős--Szekeres problem, a classic problem in computational geometry. It's significant because it tackles a specific, unsolved case of a well-known conjecture. The use of SAT encoding and constraint satisfaction techniques is a common approach for tackling combinatorial problems, and the paper's contribution lies in its specific encoding and the insights gained from its application to this particular problem. The reported runtime variability and heavy-tailed behavior highlight the computational challenges and potential areas for improvement in the encoding.
Reference

The framework yields UNSAT certificates for a collection of anchored subfamilies. We also report pronounced runtime variability across configurations, including heavy-tailed behavior that currently dominates the computational effort and motivates further encoding refinements.

Quantum Superintegrable Systems in Flat Space: A Review

Published:Dec 30, 2025 07:39
1 min read
ArXiv

Analysis

This paper reviews six two-dimensional quantum superintegrable systems, confirming the Montreal conjecture. It highlights their exact solvability, algebraic structure, and polynomial algebras of integrals, emphasizing their importance in understanding quantum systems with special symmetries and their connection to hidden algebraic structures.
Reference

All models are exactly-solvable, admit algebraic forms for the Hamiltonian and integrals, have polynomial eigenfunctions, hidden algebraic structure, and possess a polynomial algebra of integrals.

research#mathematics🔬 ResearchAnalyzed: Jan 4, 2026 06:48

Integrality of a trigonometric determinant arising from a conjecture of Sun

Published:Dec 30, 2025 06:17
1 min read
ArXiv

Analysis

The article likely discusses a mathematical proof or analysis related to a trigonometric determinant. The focus is on proving its integrality, which means the determinant's value is always an integer. The connection to Sun's conjecture suggests the work builds upon or addresses a specific problem in number theory or related fields.
Reference

Analysis

This paper investigates the AGT correspondence, a relationship between conformal field theory and gauge theory, specifically in the context of 5-dimensional circular quiver gauge theories. It extends existing approaches using free-field formalism and integral representations to analyze both generic and degenerate conformal blocks on elliptic surfaces. The key contribution is the verification of equivalence between these conformal blocks and instanton partition functions and defect partition functions (Shiraishi functions) in the 5D gauge theory. This work provides a new perspective on deriving equations for Shiraishi functions.
Reference

The paper checks equivalence with instanton partition function of a 5d circular quiver gauge theory...and with partition function of a defect in the same theory, also known as the Shiraishi function.

Bethe Subspaces and Toric Arrangements

Published:Dec 29, 2025 14:02
1 min read
ArXiv

Analysis

This paper explores the geometry of Bethe subspaces, which are related to integrable systems and Yangians, and their connection to toric arrangements. It provides a compactification of the parameter space for these subspaces and establishes a link to the logarithmic tangent bundle of a specific geometric object. The work extends and refines existing results in the field, particularly for classical root systems, and offers conjectures for future research directions.
Reference

The paper proves that the family of Bethe subspaces extends regularly to the minimal wonderful model of the toric arrangement.

Analysis

This article announces a solution to a mathematical conjecture. The focus is on a specific area of graph theory within the context of association schemes. The source is ArXiv, indicating a pre-print or research paper.
Reference

Analysis

This paper extends the Hilton-Milner theory to (k, ℓ)-sum-free sets in finite vector spaces, providing a deeper understanding of their structure and maximum size. It addresses a problem in additive combinatorics, offering stability results and classifications beyond the extremal regime. The work connects to the 3k-4 conjecture and utilizes additive combinatorics and Fourier analysis, demonstrating the interplay between different mathematical areas.
Reference

The paper determines the maximum size of (k, ℓ)-sum-free sets and classifies extremal configurations, proving sharp Hilton-Milner type stability results.

Graphs with Large Maximum Forcing Number

Published:Dec 28, 2025 03:37
1 min read
ArXiv

Analysis

This paper investigates the maximum forcing number of graphs, a concept related to perfect matchings. It confirms a conjecture by Liu and Zhang, providing a bound on the maximum forcing number based on the number of edges. The paper also explores the relationship between the maximum forcing number and matching switches in bipartite graphs, and investigates the minimum forcing number in specific cases. The results contribute to the understanding of graph properties related to matchings and forcing numbers.
Reference

The paper confirms a conjecture: `F(G) ≤ n - n^2/e(G)` and explores the implications for matching switches in bipartite graphs.

Analysis

This article likely presents advanced theoretical physics research, focusing on string theory in dynamic spacetime scenarios. The title suggests an exploration of the species scale (a concept related to the number of degrees of freedom in a theory) and the TCC (Tachyon Condensation Conjecture) bound, potentially refining existing understanding within this complex field. The use of 'time-dependent backgrounds' indicates the study of string theory in non-static universes, adding to the complexity.
Reference

Analysis

This paper investigates spectral supersaturation problems for color-critical graphs, a central topic in extremal graph theory. It builds upon previous research by Bollobás-Nikiforov and addresses a problem proposed by Ning-Zhai. The results provide a spectral counterpart to existing extremal supersaturation results and offer novel insights into the behavior of graphs based on their spectral radius.
Reference

The paper proves spectral supersaturation results for color-critical graphs, providing a complete resolution to a problem proposed by Ning-Zhai.

Analysis

This article, Part (I), likely delves into the Burness-Giudici conjecture, focusing on primitive groups of Lie type with rank one. The conjecture probably concerns the properties and classifications of these groups. The use of 'Part (I)' suggests a multi-part series, indicating a complex and potentially extensive analysis. The source, ArXiv, implies this is a research paper, likely aimed at a specialized audience familiar with group theory and Lie algebras.

Key Takeaways

Reference

The Burness-Giudici conjecture likely deals with the classification and properties of primitive groups.

Verification of Sierpinski's Hypothesis H1

Published:Dec 27, 2025 00:01
1 min read
ArXiv

Analysis

This paper addresses Sierpinski's Hypothesis H1, a conjecture about the distribution of primes within square arrangements of consecutive integers. The significance lies in its connection to and strengthening of other prime number conjectures (Oppermann and Legendre). The paper's contribution is the verification of the hypothesis for a large range of values and the establishment of partial results for larger ranges, providing insights into prime number distribution.
Reference

The paper verifies Sierpinski's Hypothesis H1 for the first $n \leq 4,553,432,387$ and demonstrates partial results for larger n, such as at least one quarter of the rows containing a prime.

Research#Mathematics🔬 ResearchAnalyzed: Jan 10, 2026 07:57

New Converse Theorem Unveiled for Borcherds Products

Published:Dec 23, 2025 19:01
1 min read
ArXiv

Analysis

This article reports on a new theorem concerning Borcherds products, a topic within theoretical mathematics. The significance of this result depends heavily on the specific mathematical context and its potential applications.

Key Takeaways

Reference

A new converse theorem for Borcherds products.

Research#Math🔬 ResearchAnalyzed: Jan 10, 2026 08:01

AI-Assisted Proof: Jones Polynomial and Knot Cosmetic Surgery Conjecture

Published:Dec 23, 2025 17:01
1 min read
ArXiv

Analysis

This article discusses the application of mathematical tools to prove the Cosmetic Surgery Conjecture related to knot theory, leveraging the Jones polynomial. The use of advanced mathematical techniques in conjunction with AI potentially indicates further applications to other complex areas of theoretical computer science.
Reference

The article uses the Jones polynomial to prove infinite families of knots satisfy the Cosmetic Surgery Conjecture.

Research#Math🔬 ResearchAnalyzed: Jan 10, 2026 08:03

Proof of Watanabe-Yoshida Conjecture Using Ehrhart Theory

Published:Dec 23, 2025 15:32
1 min read
ArXiv

Analysis

This article presents a significant contribution to the field of mathematics by proving a previously unproven conjecture. The use of Ehrhart theory suggests a novel approach and opens possibilities for future research in related areas.
Reference

A proof of a conjecture of Watanabe--Yoshida via Ehrhart Theory

Research#llm🔬 ResearchAnalyzed: Jan 4, 2026 09:14

Around Segal conjecture in p-adic geometry

Published:Dec 19, 2025 15:10
1 min read
ArXiv

Analysis

This article likely discusses mathematical research related to the Segal conjecture within the framework of p-adic geometry. The title suggests an exploration or investigation of the conjecture, potentially offering new insights, proofs, or applications within this specific mathematical domain. The use of "Around" implies the article might not provide a definitive solution but rather contributes to the understanding of the conjecture.

Key Takeaways

    Reference

    Connor Leahy - e/acc, AGI and the future.

    Published:Apr 21, 2024 15:05
    1 min read
    ML Street Talk Pod

    Analysis

    This article summarizes a podcast episode featuring Connor Leahy, CEO of Conjecture, discussing AI alignment, AGI, and related philosophical concepts. It highlights Leahy's perspective and includes interviews. The article also promotes the podcast's Patreon and donation links.
    Reference

    The article doesn't contain direct quotes, but it mentions Leahy's philosophy and perspective on life as a process that "rides entropy".