Search:
Match:
3 results

Analysis

This paper reviews the application of hydrodynamic and holographic approaches to understand the non-equilibrium dynamics of the quark-gluon plasma created in heavy ion collisions. It highlights the challenges of describing these dynamics directly within QCD and the utility of effective theories and holographic models, particularly at strong coupling. The paper focuses on three specific examples: non-equilibrium shear viscosity, sound wave propagation, and the chiral magnetic effect, providing a valuable overview of current research in this area.
Reference

Holographic descriptions allow access to the full non-equilibrium dynamics at strong coupling.

Analysis

This paper investigates the fascinating fracture patterns of Sumi-Wari, a traditional Japanese art form. It connects the aesthetic patterns to fundamental physics, specifically the interplay of surface tension, subphase viscosity, and film mechanics. The study's strength lies in its experimental validation and the development of a phenomenological model that accurately captures the observed behavior. The findings provide insights into how material properties and environmental factors influence fracture dynamics in thin films, which could have implications for materials science and other fields.
Reference

The number of crack spikes increases with the viscosity of the subphase.

Research#Physics🔬 ResearchAnalyzed: Jan 10, 2026 17:51

High-pT Physics and Data: Constraining the Shear Viscosity-to-Entropy Ratio

Published:Dec 26, 2025 19:37
1 min read
ArXiv

Analysis

This article explores the use of high-transverse-momentum (high-pT) physics and experimental data to constrain the shear viscosity-to-entropy density ratio (η/s) of the quark-gluon plasma. The research has the potential to refine our understanding of the fundamental properties of this exotic state of matter.
Reference

The article's focus is on utilizing high-pT physics and data to constrain η/s.