Search:
Match:
4 results

Analysis

This paper investigates solitary waves within the Dirac-Klein-Gordon system using numerical methods. It explores the relationship between energy, charge, and a parameter ω, employing an iterative approach and comparing it with the shooting method for massless scalar fields. The study utilizes virial identities to ensure simulation accuracy and discusses implications for spectral stability. The research contributes to understanding the behavior of these waves in both one and three spatial dimensions.
Reference

The paper constructs solitary waves in Dirac--Klein--Gordon (in one and three spatial dimensions) and studies the dependence of energy and charge on $ω$.

Analysis

This paper introduces a novel method for predicting the random close packing (RCP) fraction in binary hard-disk mixtures. The significance lies in its simplicity, accuracy, and universality. By leveraging a parameter derived from the third virial coefficient, the model provides a more consistent and accurate prediction compared to existing models. The ability to extend the method to polydisperse mixtures further enhances its practical value and broadens its applicability to various hard-disk systems.
Reference

The RCP fraction depends nearly linearly on this parameter, leading to a universal collapse of simulation data.

Analysis

This article likely presents a theoretical physics paper focusing on mathematical identities and their applications to specific physical phenomena (solitons, instantons, and bounces). The title suggests a focus on radial constraints, implying the use of spherical or radial coordinates in the analysis. The source, ArXiv, indicates it's a pre-print server, common for scientific publications.
Reference

Analysis

This paper provides an analytical proof of the blowup rate for the mass-critical nonlinear Schrödinger equation (NLS) with rotation and a repulsive harmonic potential. It uses a virial identity and a pseudo-conformal transform. The findings are significant because they reveal how the repulsive potential can lead to global solutions in the focusing RNLS, a phenomenon previously observed in the non-rotational case. Numerical simulations support the analytical results.
Reference

The paper proves the "log-log" blowup rate and describes the mass concentration behavior near the blowup time. It also finds that increasing the repulsive potential can lead to global solutions.