Search:
Match:
1 results

Analysis

This paper provides a rigorous analysis of how Transformer attention mechanisms perform Bayesian inference. It addresses the limitations of studying large language models by creating controlled environments ('Bayesian wind tunnels') where the true posterior is known. The findings demonstrate that Transformers, unlike MLPs, accurately reproduce Bayesian posteriors, highlighting a clear architectural advantage. The paper identifies a consistent geometric mechanism underlying this inference, involving residual streams, feed-forward networks, and attention for content-addressable routing. This work is significant because it offers a mechanistic understanding of how Transformers achieve Bayesian reasoning, bridging the gap between small, verifiable systems and the reasoning capabilities observed in larger models.
Reference

Transformers reproduce Bayesian posteriors with $10^{-3}$-$10^{-4}$ bit accuracy, while capacity-matched MLPs fail by orders of magnitude, establishing a clear architectural separation.