Search:
Match:
1 results

Analysis

This paper investigates the efficiency of a self-normalized importance sampler for approximating tilted distributions, which is crucial in fields like finance and climate science. The key contribution is a sharp characterization of the accuracy of this sampler, revealing a significant difference in sample requirements based on whether the underlying distribution is bounded or unbounded. This has implications for the practical application of importance sampling in various domains.
Reference

The findings reveal a surprising dichotomy: while the number of samples needed to accurately tilt a bounded random vector increases polynomially in the tilt amount, it increases at a super polynomial rate for unbounded distributions.