Search:
Match:
1 results

Analysis

This paper introduces SPECTRE, a novel self-supervised learning framework for decoding fine-grained movements from sEMG signals. The key contributions are a spectral pre-training task and a Cylindrical Rotary Position Embedding (CyRoPE). SPECTRE addresses the challenges of signal non-stationarity and low signal-to-noise ratios in sEMG data, leading to improved performance in movement decoding, especially for prosthetic control. The paper's significance lies in its domain-specific approach, incorporating physiological knowledge and modeling the sensor topology to enhance the accuracy and robustness of sEMG-based movement decoding.
Reference

SPECTRE establishes a new state-of-the-art for movement decoding, significantly outperforming both supervised baselines and generic SSL approaches.