Search:
Match:
1 results

Analysis

This paper addresses a challenging problem in stochastic optimal control: controlling a system when you only have intermittent, noisy measurements. The authors cleverly reformulate the problem on the 'belief space' (the space of possible states given the observations), allowing them to apply the Pontryagin Maximum Principle. The key contribution is a new maximum principle tailored for this hybrid setting, linking it to dynamic programming and filtering equations. This provides a theoretical foundation and leads to a practical, particle-based numerical scheme for finding near-optimal controls. The focus on actively controlling the observation process is particularly interesting.
Reference

The paper derives a Pontryagin maximum principle on the belief space, providing necessary conditions for optimality in this hybrid setting.