Search:
Match:
2 results

Particles Catalyze Filament Knotting

Published:Dec 30, 2025 03:40
1 min read
ArXiv

Analysis

This paper investigates how the presence of free-moving particles in a surrounding environment can influence the spontaneous knotting of flexible filaments. The key finding is that these particles can act as kinetic catalysts, enhancing the probability and rate of knot formation, but only within an optimal range of particle size and concentration. This has implications for understanding and controlling topological complexity in various settings, from biological systems to materials science.
Reference

Free-moving particles act as kinetic catalysts for spontaneous knotting.

Temperature Fluctuations in Hot QCD Matter

Published:Dec 30, 2025 01:32
1 min read
ArXiv

Analysis

This paper investigates temperature fluctuations in hot QCD matter using a specific model (PNJL). The key finding is that high-order cumulant ratios show non-monotonic behavior across the chiral phase transition, with distinct structures potentially linked to the deconfinement phase transition. The results are relevant for heavy-ion collision experiments.
Reference

The high-order cumulant ratios $R_{n2}$ ($n>2$) exhibit non-monotonic variations across the chiral phase transition... These structures gradually weaken and eventually vanish at high chemical potential as they compete with the sharpening of the chiral phase transition.