Search:
Match:
3 results

Analysis

This paper investigates the impact of the $^{16}$O($^{16}$O, n)$^{31}$S reaction rate on the evolution and nucleosynthesis of Population III stars. It's significant because it explores how a specific nuclear reaction rate affects the production of elements in the early universe, potentially resolving discrepancies between theoretical models and observations of extremely metal-poor stars, particularly regarding potassium abundance.
Reference

Increasing the $^{16}$O($^{16}$O, n)$^{31}$S reaction rate enhances the K yield by a factor of 6.4, and the predicted [K/Ca] and [K/Fe] values become consistent with observational data.

Halo Formation in Heavy Sodium Isotopes and Orbit Inversion

Published:Dec 28, 2025 14:49
1 min read
ArXiv

Analysis

This paper investigates the impact of inverting the p and f shell-model orbits on the formation of halo structures in neutron-rich sodium isotopes. It uses theoretical models to explore the phenomenon, focusing on isotopes like 34, 37, and 39Na. The research is significant because it contributes to our understanding of nuclear structure, particularly in exotic nuclei, and how shell structure influences halo formation. The study also suggests a method (electric dipole response) to experimentally probe these structures.
Reference

The halo formation is driven by the weakening of the shell gap and inversion of the 2p3/2 and 1f7/2 orbits.

Analysis

This article, sourced from ArXiv, likely presents novel research findings in nuclear physics. The study focuses on the fragmentation of neutron-rich carbon isotopes, a topic crucial for understanding nuclear structure and reactions.
Reference

The study investigates fragmentation on light targets at 27.5 MeV/nucleon.