Search:
Match:
2 results

Analysis

This paper addresses a critical challenge in Large-Eddy Simulation (LES) – defining an appropriate subgrid characteristic length for anisotropic grids. This is particularly important for simulations of near-wall turbulence and shear layers, where anisotropic meshes are common. The paper's significance lies in proposing a novel length scale derived from the interplay of numerical discretization and filtering, aiming to improve the accuracy of LES models on such grids. The work's value is in providing a more robust and accurate approach to LES in complex flow simulations.
Reference

The paper introduces a novel subgrid characteristic length derived from the analysis of the entanglement between the numerical discretization and the filtering in LES.

Analysis

This paper addresses the mathematical properties of the Navier-Stokes-αβ equations, a model used in fluid dynamics, specifically focusing on the impact of 'wall-eddy' boundary conditions. The authors demonstrate global well-posedness and regularity, meaning they prove the existence, uniqueness, and smoothness of solutions for all times. This is significant because it provides a rigorous mathematical foundation for a model of near-wall turbulence, which is a complex and important phenomenon in fluid mechanics. The paper's contribution lies in providing the first complete analytical treatment of the wall-eddy boundary model.
Reference

The paper establishes global well-posedness and regularity for the Navier-Stokes-αβ system endowed with the wall-eddy boundary conditions.