Search:
Match:
1 results

Analysis

This paper addresses a fundamental challenge in quantum transport: how to formulate thermodynamic uncertainty relations (TURs) for non-Abelian charges, where different charge components cannot be simultaneously measured. The authors derive a novel matrix TUR, providing a lower bound on the precision of currents based on entropy production. This is significant because it extends the applicability of TURs to more complex quantum systems.
Reference

The paper proves a fully nonlinear, saturable lower bound valid for arbitrary current vectors Δq: D_bath ≥ B(Δq,V,V'), where the bound depends only on the transported-charge signal Δq and the pre/post collision covariance matrices V and V'.