Search:
Match:
3 results

Analysis

This paper addresses a critical challenge in hybrid Wireless Sensor Networks (WSNs): balancing high-throughput communication with the power constraints of passive backscatter sensors. The proposed Backscatter-Constrained Transmit Antenna Selection (BC-TAS) framework offers a novel approach to optimize antenna selection in multi-antenna systems, considering link reliability, energy stability for backscatter sensors, and interference suppression. The use of a multi-objective cost function and Kalman-based channel smoothing are key innovations. The results demonstrate significant improvements in outage probability and energy efficiency, making BC-TAS a promising solution for dense, power-constrained wireless environments.
Reference

BC-TAS achieves orders-of-magnitude improvement in outage probability and significant gains in energy efficiency compared to conventional MU-MIMO baselines.

Analysis

This paper introduces a novel framework using Chebyshev polynomials to reconstruct the continuous angular power spectrum (APS) from channel covariance data. The approach transforms the ill-posed APS inversion into a manageable linear regression problem, offering advantages in accuracy and enabling downlink covariance prediction from uplink measurements. The use of Chebyshev polynomials allows for effective control of approximation errors and the incorporation of smoothness and non-negativity constraints, making it a valuable contribution to covariance-domain processing in multi-antenna systems.
Reference

The paper derives an exact semidefinite characterization of nonnegative APS and introduces a derivative-based regularizer that promotes smoothly varying APS profiles while preserving transitions of clusters.

Analysis

This paper addresses the challenge of channel estimation in multi-user multi-antenna systems enhanced by Reconfigurable Intelligent Surfaces (RIS). The proposed Iterative Channel Estimation, Detection, and Decoding (ICEDD) scheme aims to improve accuracy and reduce pilot overhead. The use of encoded pilots and iterative processing, along with channel tracking, are key contributions. The paper's significance lies in its potential to improve the performance of RIS-assisted communication systems, particularly in scenarios with non-sparse propagation and various RIS architectures.
Reference

The core idea is to exploit encoded pilots (EP), enabling the use of both pilot and parity bits to iteratively refine channel estimates.