Search:
Match:
3 results

Analysis

This paper addresses the crucial problem of approximating the spectra of evolution operators for linear delay equations. This is important because it allows for the analysis of stability properties in nonlinear equations through linearized stability. The paper provides a general framework for analyzing the convergence of various discretization methods, unifying existing proofs and extending them to methods lacking formal convergence analysis. This is valuable for researchers working on the stability and dynamics of systems with delays.
Reference

The paper develops a general convergence analysis based on a reformulation of the operators by means of a fixed-point equation, providing a list of hypotheses related to the regularization properties of the equation and the convergence of the chosen approximation techniques on suitable subspaces.

Analysis

This paper presents a novel method for extracting radial velocities from spectroscopic data, achieving high precision by factorizing the data into principal spectra and time-dependent kernels. This approach allows for the recovery of both spectral components and radial velocity shifts simultaneously, leading to improved accuracy, especially in the presence of spectral variability. The validation on synthetic and real-world datasets, including observations of HD 34411 and τ Ceti, demonstrates the method's effectiveness and its ability to reach the instrumental precision limit. The ability to detect signals with semi-amplitudes down to ~50 cm/s is a significant advancement in the field of exoplanet detection.
Reference

The method recovers coherent signals and reaches the instrumental precision limit of ~30 cm/s.

Analysis

This paper addresses the inverse scattering problem, a crucial area in physics and engineering, specifically within the context of topological insulators. The ability to reconstruct waveguide properties from scattering data has significant implications for designing and characterizing these materials. The paper's contribution lies in providing theoretical results (reconstruction, stability) and numerical validation, which is essential for practical applications. The focus on a Dirac system model adds to the paper's specificity and relevance.
Reference

The paper demonstrates the reconstruction of short-range perturbations from scattering data in a linearized and finite-dimensional setting, along with a stability result.