Search:
Match:
2 results

Analysis

This paper addresses the challenge of aligning large language models (LLMs) with human preferences, moving beyond the limitations of traditional methods that assume transitive preferences. It introduces a novel approach using Nash learning from human feedback (NLHF) and provides the first convergence guarantee for the Optimistic Multiplicative Weights Update (OMWU) algorithm in this context. The key contribution is achieving linear convergence without regularization, which avoids bias and improves the accuracy of the duality gap calculation. This is particularly significant because it doesn't require the assumption of NE uniqueness, and it identifies a novel marginal convergence behavior, leading to better instance-dependent constant dependence. The work's experimental validation further strengthens its potential for LLM applications.
Reference

The paper provides the first convergence guarantee for Optimistic Multiplicative Weights Update (OMWU) in NLHF, showing that it achieves last-iterate linear convergence after a burn-in phase whenever an NE with full support exists.

Analysis

This paper investigates the sample complexity of Policy Mirror Descent (PMD) with Temporal Difference (TD) learning in reinforcement learning, specifically under the Markovian sampling model. It addresses limitations in existing analyses by considering TD learning directly, without requiring explicit approximation of action values. The paper introduces two algorithms, Expected TD-PMD and Approximate TD-PMD, and provides sample complexity guarantees for achieving epsilon-optimality. The results are significant because they contribute to the theoretical understanding of PMD methods in a more realistic setting (Markovian sampling) and provide insights into the sample efficiency of these algorithms.
Reference

The paper establishes $ ilde{O}(\varepsilon^{-2})$ and $O(\varepsilon^{-2})$ sample complexities for achieving average-time and last-iterate $\varepsilon$-optimality, respectively.