Search:
Match:
6 results

Analysis

This paper explores the electronic transport in a specific type of Josephson junction, focusing on the impact of non-Hermitian Hamiltonians. The key contribution is the identification of a novel current component arising from the imaginary part of Andreev levels, particularly relevant in the context of broken time-reversal symmetry. The paper proposes an experimental protocol to detect this effect, offering a way to probe non-Hermiticity in open junctions beyond the usual focus on exceptional points.
Reference

A novel contribution arises that is proportional to the phase derivative of the levels broadening.

Analysis

This paper is significant because it explores the optoelectronic potential of Kagome metals, a relatively new class of materials known for their correlated and topological quantum states. The authors demonstrate high-performance photodetectors using a KV3Sb5/WSe2 van der Waals heterojunction, achieving impressive responsivity and response time. This work opens up new avenues for exploring Kagome metals in optoelectronic applications and highlights the potential of van der Waals heterostructures for advanced photodetection.
Reference

The device achieves an open-circuit voltage up to 0.6 V, a responsivity of 809 mA/W, and a fast response time of 18.3 us.

Analysis

This paper explores the impact of electron-electron interactions and spin-orbit coupling on Andreev pair qubits, a type of qubit based on Andreev bound states (ABS) in quantum dot Josephson junctions. The research is significant because it investigates how these interactions can enhance spin transitions within the ABS, potentially making the qubits more susceptible to local magnetic field fluctuations and thus impacting decoherence. The findings could inform the design and control of these qubits for quantum computing applications.
Reference

Electron-electron interaction admixes single-occupancy Yu-Shiba-Rusinov (YSR) components into the ABS states, thereby strongly enhancing spin transitions in the presence of spin-orbit coupling.

Analysis

This paper introduces a novel neuromorphic computing platform based on protonic nickelates. The key innovation lies in integrating both spatiotemporal processing and programmable memory within a single material system. This approach offers potential advantages in terms of energy efficiency, speed, and CMOS compatibility, making it a promising direction for scalable intelligent hardware. The demonstrated capabilities in real-time pattern recognition and classification tasks highlight the practical relevance of this research.
Reference

Networks of symmetric NdNiO3 junctions exhibit emergent spatial interactions mediated by proton redistribution, while each node simultaneously provides short-term temporal memory, enabling nanoseconds scale operation with an energy cost of 0.2 nJ per input.

Analysis

This paper investigates the conditions required for a Josephson diode effect, a phenomenon where the current-phase relation in a Josephson junction is asymmetric, leading to a preferred direction for current flow. The focus is on junctions incorporating strongly spin-polarized magnetic materials. The authors identify four key conditions: noncoplanar spin texture, contribution from both spin bands, different band-specific densities of states, and higher harmonics in the current-phase relation. These conditions are crucial for breaking symmetries and enabling the diode effect. The paper's significance lies in its contribution to understanding and potentially engineering novel spintronic devices.
Reference

The paper identifies four necessary conditions: noncoplanarity of the spin texture, contribution from both spin bands, different band-specific densities of states, and higher harmonics in the CPR.

Research#Quantum Computing🔬 ResearchAnalyzed: Jan 10, 2026 10:43

Strain-Engineered Graphene for Electrically Tunable Spin Qubits

Published:Dec 16, 2025 15:44
1 min read
ArXiv

Analysis

This research explores a promising avenue for quantum computing by leveraging graphene's unique properties. The ability to electrically tune spin qubits in graphene p-n junctions could lead to more efficient and controllable quantum devices.
Reference

Electrically tunable spin qubits in strain-engineered graphene p-n junctions