Universal Aging Dynamics in Granular Gases
Published:Dec 29, 2025 17:29
•1 min read
•ArXiv
Analysis
This paper provides quantitative benchmarks for aging in 3D driven dissipative gases. The findings on energy decay time, steady-state temperature, and velocity autocorrelation function offer valuable insights into the behavior of granular gases, which are relevant to various fields like material science and physics. The large-scale simulations and the reported scaling laws are significant contributions.
Key Takeaways
Reference
“The characteristic energy decay time exhibits a universal inverse scaling $τ_0 \propto ε^{-1.03 \pm 0.02}$ with the dissipation parameter $ε= 1 - e^2$.”