Search:
Match:
3 results

Analysis

This paper explores the application of quantum computing, specifically using the Ising model and Variational Quantum Eigensolver (VQE), to tackle the Traveling Salesman Problem (TSP). It highlights the challenges of translating the TSP into an Ising model and discusses the use of VQE as a SAT-solver, qubit efficiency, and the potential of Discrete Quantum Exhaustive Search to improve VQE. The work is relevant to the Noisy Intermediate Scale Quantum (NISQ) era and suggests broader applicability to other NP-complete and even QMA problems.
Reference

The paper discusses the use of VQE as a novel SAT-solver and the importance of qubit efficiency in the Noisy Intermediate Scale Quantum-era.

Analysis

This paper addresses the critical issue of sensor failure robustness in sparse arrays, which are crucial for applications like radar and sonar. It extends the known optimal configurations of Robust Minimum Redundancy Arrays (RMRAs) and provides a new family of sub-optimal RMRAs with closed-form expressions (CFEs), making them easier to design and implement. The exhaustive search method and the derivation of CFEs are significant contributions.
Reference

The novelty of this work is two-fold: extending the catalogue of known optimal RMRAs and formulating a sub-optimal RMRA that abides by CFEs.

Analysis

This paper addresses the challenge of predicting multiple properties of additively manufactured fiber-reinforced composites (CFRC-AM) using a data-efficient approach. The authors combine Latin Hypercube Sampling (LHS) for experimental design with a Squeeze-and-Excitation Wide and Deep Neural Network (SE-WDNN). This is significant because CFRC-AM performance is highly sensitive to manufacturing parameters, making exhaustive experimentation costly. The SE-WDNN model outperforms other machine learning models, demonstrating improved accuracy and interpretability. The use of SHAP analysis to identify the influence of reinforcement strategy is also a key contribution.
Reference

The SE-WDNN model achieved the lowest overall test error (MAPE = 12.33%) and showed statistically significant improvements over the baseline wide and deep neural network.