Search:
Match:
4 results

Analysis

This paper explores the use of Wehrl entropy, derived from the Husimi distribution, to analyze the entanglement structure of the proton in deep inelastic scattering, going beyond traditional longitudinal entanglement measures. It aims to incorporate transverse degrees of freedom, providing a more complete picture of the proton's phase space structure. The study's significance lies in its potential to improve our understanding of hadronic multiplicity and the internal structure of the proton.
Reference

The entanglement entropy naturally emerges from the normalization condition of the Husimi distribution within this framework.

Analysis

This paper addresses the challenge of efficiently characterizing entanglement in quantum systems. It highlights the limitations of using the second Rényi entropy as a direct proxy for the von Neumann entropy, especially in identifying critical behavior. The authors propose a method to detect a Rényi-index-dependent transition in entanglement scaling, which is crucial for understanding the underlying physics of quantum systems. The introduction of a symmetry-aware lower bound on the von Neumann entropy is a significant contribution, providing a practical diagnostic for anomalous entanglement scaling using experimentally accessible data.
Reference

The paper introduces a symmetry-aware lower bound on the von Neumann entropy built from charge-resolved second Rényi entropies and the subsystem charge distribution, providing a practical diagnostic for anomalous entanglement scaling.

Analysis

This paper introduces novel generalizations of entanglement entropy using Unit-Invariant Singular Value Decomposition (UISVD). These new measures are designed to be invariant under scale transformations, making them suitable for scenarios where standard entanglement entropy might be problematic, such as in non-Hermitian systems or when input and output spaces have different dimensions. The authors demonstrate the utility of UISVD-based entropies in various physical contexts, including Biorthogonal Quantum Mechanics, random matrices, and Chern-Simons theory, highlighting their stability and physical relevance.
Reference

The UISVD yields stable, physically meaningful entropic spectra that are invariant under rescalings and normalisations.

Analysis

This paper explores the behavior of unitary and nonunitary A-D-E minimal models, focusing on the impact of topological defects. It connects conformal field theory structures to lattice models, providing insights into fusion algebras, boundary and defect properties, and entanglement entropy. The use of coset graphs and dilogarithm functions suggests a deep connection between different aspects of these models.
Reference

The paper argues that the coset graph $A \otimes G/\mathbb{Z}_2$ encodes not only the coset graph fusion algebra, but also boundary g-factors, defect g-factors, and relative symmetry resolved entanglement entropy.