Search:
Match:
4 results

Analysis

This paper introduces two new high-order numerical schemes (CWENO and ADER-DG) for solving the Einstein-Euler equations, crucial for simulating astrophysical phenomena involving strong gravity. The development of these schemes, especially the ADER-DG method on unstructured meshes, is a significant step towards more complex 3D simulations. The paper's validation through various tests, including black hole and neutron star simulations, demonstrates the schemes' accuracy and stability, laying the groundwork for future research in numerical relativity.
Reference

The paper validates the numerical approaches by successfully reproducing standard vacuum test cases and achieving long-term stable evolutions of stationary black holes, including Kerr black holes with extreme spin.

Analysis

This paper addresses the problem of discretizing the sine-Gordon equation, a fundamental equation in physics, in non-characteristic coordinates. It contrasts with existing work that primarily focuses on characteristic coordinates. The paper's significance lies in exploring new discretization methods, particularly for laboratory coordinates, where the resulting discretization is complex. The authors propose a solution by reformulating the equation as a two-component system, leading to a more manageable discretization. This work contributes to the understanding of integrable systems and their numerical approximations.
Reference

The paper proposes integrable space discretizations of the sine-Gordon equation in three distinct cases of non-characteristic coordinates.

Analysis

This paper investigates the use of Reduced Order Models (ROMs) for approximating solutions to the Navier-Stokes equations, specifically focusing on viscous, incompressible flow within polygonal domains. The key contribution is demonstrating exponential convergence rates for these ROM approximations, which is a significant improvement over slower convergence rates often seen in numerical simulations. This is achieved by leveraging recent results on the regularity of solutions and applying them to the analysis of Kolmogorov n-widths and POD Galerkin methods. The paper's findings suggest that ROMs can provide highly accurate and efficient solutions for this class of problems.
Reference

The paper demonstrates "exponential convergence rates of POD Galerkin methods that are based on truth solutions which are obtained offline from low-order, divergence stable mixed Finite Element discretizations."

Analysis

This research paper explores the optimization of numerical methods, specifically Hybridizable Discontinuous Galerkin (HDG), for GPU architectures, which is crucial for high-performance scientific simulations. The focus on preconditioning techniques suggests an attempt to improve the computational efficiency and scalability of HDG discretizations on GPUs.
Reference

The paper focuses on preconditioning techniques for Hybridizable Discontinuous Galerkin Discretizations on GPU Architectures.