Search:
Match:
3 results

Analysis

This paper highlights the application of the Trojan Horse Method (THM) to refine nuclear reaction rates used in Big Bang Nucleosynthesis (BBN) calculations. The study's significance lies in its potential to address discrepancies between theoretical predictions and observed primordial abundances, particularly for Lithium-7 and deuterium. The use of THM-derived rates offers a new perspective on these long-standing issues in BBN.
Reference

The result shows significant differences with the use of THM rates, which in some cases goes in the direction of improving the agreement with the observations with respect to the use of only reaction rates from direct data, especially for the $^7$Li and deuterium abundances.

Research#Physics🔬 ResearchAnalyzed: Jan 4, 2026 06:49

Isotope Effects and the Negative Thermal Expansion Phenomena in Ice and Water

Published:Dec 29, 2025 07:10
1 min read
ArXiv

Analysis

This article likely discusses the impact of isotopic variations (e.g., deuterium vs. hydrogen) on the thermal expansion properties of ice and water. It suggests an investigation into how these variations influence the unusual behavior of water and ice, specifically the negative thermal expansion observed in certain temperature ranges. The source, ArXiv, indicates this is a pre-print or research paper.
Reference

Analysis

This article reports on research into quantum scattering of hydrogen and deuterium on carbon dioxide, focusing on its relevance to planetary atmospheres. The study likely calculates cross sections and rate coefficients, which are crucial for understanding atmospheric processes and evolution. The use of 'hot' H/D suggests the study considers high-energy collisions, potentially simulating conditions in specific atmospheric layers or during planetary formation. The title clearly indicates the research's focus and its potential applications.
Reference