Search:
Match:
2 results

Analysis

This paper introduces DynaFix, an innovative approach to Automated Program Repair (APR) that leverages execution-level dynamic information to iteratively refine the patch generation process. The key contribution is the use of runtime data like variable states, control-flow paths, and call stacks to guide Large Language Models (LLMs) in generating patches. This iterative feedback loop, mimicking human debugging, allows for more effective repair of complex bugs compared to existing methods that rely on static analysis or coarse-grained feedback. The paper's significance lies in its potential to improve the performance and efficiency of APR systems, particularly in handling intricate software defects.
Reference

DynaFix repairs 186 single-function bugs, a 10% improvement over state-of-the-art baselines, including 38 bugs previously unrepaired.

Automated CFI for Legacy C/C++ Systems

Published:Dec 27, 2025 20:38
1 min read
ArXiv

Analysis

This paper presents CFIghter, an automated system to enable Control-Flow Integrity (CFI) in large C/C++ projects. CFI is important for security, and the automation aspect addresses the significant challenges of deploying CFI in legacy codebases. The paper's focus on practical deployment and evaluation on real-world projects makes it significant.
Reference

CFIghter automatically repairs 95.8% of unintended CFI violations in the util-linux codebase while retaining strict enforcement at over 89% of indirect control-flow sites.