Search:
Match:
4 results

Linear-Time Graph Coloring Algorithm

Published:Dec 30, 2025 23:51
1 min read
ArXiv

Analysis

This paper presents a novel algorithm for efficiently sampling proper colorings of a graph. The significance lies in its linear time complexity, a significant improvement over previous algorithms, especially for graphs with a high maximum degree. This advancement has implications for various applications involving graph analysis and combinatorial optimization.
Reference

The algorithm achieves linear time complexity when the number of colors is greater than 3.637 times the maximum degree plus 1.

Hoffman-London Graphs: Paths Minimize H-Colorings in Trees

Published:Dec 29, 2025 19:50
1 min read
ArXiv

Analysis

This paper introduces a new technique using automorphisms to analyze and minimize the number of H-colorings of a tree. It identifies Hoffman-London graphs, where paths minimize H-colorings, and provides matrix conditions for their identification. The work has implications for various graph families and provides a complete characterization for graphs with three or fewer vertices.
Reference

The paper introduces the term Hoffman-London to refer to graphs that are minimal in this sense (minimizing H-colorings with paths).

Coloring Hardness on Low Twin-Width Graphs

Published:Dec 29, 2025 18:36
1 min read
ArXiv

Analysis

This article likely discusses the computational complexity of graph coloring problems on graphs with bounded twin-width. It suggests that finding optimal colorings might be difficult even for graphs with a specific structural property (low twin-width). The source, ArXiv, indicates this is a research paper, focusing on theoretical computer science.
Reference

research#mathematics🔬 ResearchAnalyzed: Jan 4, 2026 06:49

Two-colorings of finite grids: variations on a theorem of Tibor Gallai

Published:Dec 29, 2025 08:46
1 min read
ArXiv

Analysis

The article's title suggests a focus on mathematical research, specifically exploring colorings of finite grids and building upon a theorem by Tibor Gallai. The use of 'variations' implies an extension or modification of the original theorem. The source, ArXiv, confirms this is a research paper.

Key Takeaways

    Reference