Search:
Match:
2 results

Analysis

This paper introduces Stagewise Pairwise Mixers (SPM) as a more efficient and structured alternative to dense linear layers in neural networks. By replacing dense matrices with a composition of sparse pairwise-mixing stages, SPM reduces computational and parametric costs while potentially improving generalization. The paper's significance lies in its potential to accelerate training and improve performance, especially on structured learning problems, by offering a drop-in replacement for a fundamental component of many neural network architectures.
Reference

SPM layers implement a global linear transformation in $O(nL)$ time with $O(nL)$ parameters, where $L$ is typically constant or $log_2n$.

Research#llm📝 BlogAnalyzed: Dec 27, 2025 15:31

Achieving 262k Context Length on Consumer GPU with Triton/CUDA Optimization

Published:Dec 27, 2025 15:18
1 min read
r/learnmachinelearning

Analysis

This post highlights an individual's success in optimizing memory usage for large language models, achieving a 262k context length on a consumer-grade GPU (potentially an RTX 5090). The project, HSPMN v2.1, decouples memory from compute using FlexAttention and custom Triton kernels. The author seeks feedback on their kernel implementation, indicating a desire for community input on low-level optimization techniques. This is significant because it demonstrates the potential for running large models on accessible hardware, potentially democratizing access to advanced AI capabilities. The post also underscores the importance of community collaboration in advancing AI research and development.
Reference

I've been trying to decouple memory from compute to prep for the Blackwell/RTX 5090 architecture. Surprisingly, I managed to get it running with 262k context on just ~12GB VRAM and 1.41M tok/s throughput.