Search:
Match:
4 results
research#3d vision📝 BlogAnalyzed: Jan 16, 2026 05:03

Point Clouds Revolutionized: Exploring PointNet and PointNet++ for 3D Vision!

Published:Jan 16, 2026 04:47
1 min read
r/deeplearning

Analysis

PointNet and PointNet++ are game-changing deep learning architectures specifically designed for 3D point cloud data! They represent a significant step forward in understanding and processing complex 3D environments, opening doors to exciting applications like autonomous driving and robotics.
Reference

Although there is no direct quote from the article, the key takeaway is the exploration of PointNet and PointNet++.

Analysis

This paper introduces PointRAFT, a novel deep learning approach for accurately estimating potato tuber weight from incomplete 3D point clouds captured by harvesters. The key innovation is the incorporation of object height embedding, which improves prediction accuracy under real-world harvesting conditions. The high throughput (150 tubers/second) makes it suitable for commercial applications. The public availability of code and data enhances reproducibility and potential impact.
Reference

PointRAFT achieved a mean absolute error of 12.0 g and a root mean squared error of 17.2 g, substantially outperforming a linear regression baseline and a standard PointNet++ regression network.

Research#llm📝 BlogAnalyzed: Dec 27, 2025 19:31

Seeking 3D Neural Network Architecture Suggestions for ModelNet Dataset

Published:Dec 27, 2025 19:18
1 min read
r/deeplearning

Analysis

This post from r/deeplearning highlights a common challenge in applying neural networks to 3D data: overfitting or underfitting. The user has experimented with CNNs and ResNets on ModelNet datasets (10 and 40) but struggles to achieve satisfactory accuracy despite data augmentation and hyperparameter tuning. The problem likely stems from the inherent complexity of 3D data and the limitations of directly applying 2D-based architectures. The user's mention of a linear head and ReLU/FC layers suggests a standard classification approach, which might not be optimal for capturing the intricate geometric features of 3D models. Exploring alternative architectures specifically designed for 3D data, such as PointNets or graph neural networks, could be beneficial.
Reference

"tried out cnns and resnets, for 3d models they underfit significantly. Any suggestions for NN architectures."

Analysis

This paper addresses a practical problem in autonomous systems: the limitations of LiDAR sensors due to sparse data and occlusions. SuperiorGAT offers a computationally efficient solution by using a graph attention network to reconstruct missing elevation information. The focus on architectural refinement, rather than hardware upgrades, is a key advantage. The evaluation on diverse KITTI environments and comparison to established baselines strengthens the paper's claims.
Reference

SuperiorGAT consistently achieves lower reconstruction error and improved geometric consistency compared to PointNet-based models and deeper GAT baselines.