Search:
Match:
3 results

Analysis

This paper addresses the limitations of deterministic forecasting in chaotic systems by proposing a novel generative approach. It shifts the focus from conditional next-step prediction to learning the joint probability distribution of lagged system states. This allows the model to capture complex temporal dependencies and provides a framework for assessing forecast robustness and reliability using uncertainty quantification metrics. The work's significance lies in its potential to improve forecasting accuracy and long-range statistical behavior in chaotic systems, which are notoriously difficult to predict.
Reference

The paper introduces a general, model-agnostic training and inference framework for joint generative forecasting and shows how it enables assessment of forecast robustness and reliability using three complementary uncertainty quantification metrics.

Research#Fluid Dynamics🔬 ResearchAnalyzed: Jan 10, 2026 07:43

Emergent Oscillations in Droplet Dynamics: Insights from Lorenz Systems

Published:Dec 24, 2025 08:31
1 min read
ArXiv

Analysis

This ArXiv article explores the connection between complex fluid dynamics and chaos theory, specifically through the behavior of walking droplets. The findings offer valuable insights into emergent phenomena and may have applications in diverse fields, from materials science to robotics.
Reference

The article focuses on the emergence of Friedel-like oscillations from Lorenz dynamics in walking droplets.

Analysis

This article describes the application of quantum Bayesian optimization to tune a climate model. The use of quantum computing for climate modeling is a cutting-edge area of research. The focus on the Lorenz-96 model suggests a specific application within the broader field of climate science. The title clearly indicates the methodology (quantum Bayesian optimization) and the target application (Lorenz-96 model tuning).
Reference