Search:
Match:
3 results

Analysis

This paper addresses a critical challenge in real-world reinforcement learning: how to effectively utilize potentially suboptimal human interventions to accelerate learning without being overly constrained by them. The proposed SiLRI algorithm offers a novel approach by formulating the problem as a constrained RL optimization, using a state-wise Lagrange multiplier to account for the uncertainty of human interventions. The results demonstrate significant improvements in learning speed and success rates compared to existing methods, highlighting the practical value of the approach for robotic manipulation.
Reference

SiLRI effectively exploits human suboptimal interventions, reducing the time required to reach a 90% success rate by at least 50% compared with the state-of-the-art RL method HIL-SERL, and achieving a 100% success rate on long-horizon manipulation tasks where other RL methods struggle to succeed.

Analysis

This paper addresses the challenging problem of analyzing the stability and recurrence properties of complex dynamical systems that combine continuous and discrete dynamics, subject to stochastic disturbances and multiple time scales. The use of composite Foster functions is a key contribution, allowing for the decomposition of the problem into simpler subsystems. The applications mentioned suggest the relevance of the work to various engineering and optimization problems.
Reference

The paper develops a family of composite nonsmooth Lagrange-Foster and Lyapunov-Foster functions that certify stability and recurrence properties by leveraging simpler functions related to the slow and fast subsystems.

Analysis

This ArXiv paper explores the use of Lagrange interpolation and attribute-based encryption to improve distributed authorization. The combination suggests a novel approach to secure and flexible access control mechanisms in distributed systems.
Reference

The paper leverages Lagrange Interpolation and Attribute-Based Encryption.