Search:
Match:
10 results
Physics#Higgs Physics, 2HDM🔬 ResearchAnalyzed: Jan 3, 2026 08:37

Correlating Resonant Di-Higgs and Tri-Higgs Production in 2HDM

Published:Dec 31, 2025 13:56
1 min read
ArXiv

Analysis

This paper investigates the Two-Higgs-Doublet Model (2HDM) and explores correlations between different Higgs boson production processes. The key finding is a relationship between the branching ratios of H decaying to hh and VV, and the potential for measuring tri-Higgs production at the High-Luminosity LHC. This is significant because it provides a way to test the 2HDM and potentially discover new heavy scalars.

Key Takeaways

Reference

For heavy scalar masses between 500 GeV and 1 TeV, we find that Br($H\to hh$)/ Br($H\to ZZ)\approx 9.5.

Analysis

The paper investigates the combined effects of non-linear electrodynamics (NED) and dark matter (DM) on a magnetically charged black hole (BH) within a Hernquist DM halo. The study focuses on how magnetic charge and halo parameters influence BH observables, particularly event horizon position, critical impact parameter, and strong gravitational lensing (GL) phenomena. A key finding is the potential for charge and halo parameters to nullify each other's effects, making the BH indistinguishable from a Schwarzschild BH in terms of certain observables. The paper also uses observational data from super-massive BHs (SMBHs) to constrain the model parameters.
Reference

The paper finds combinations of charge and halo parameters that leave the deflection angle unchanged from the Schwarzschild case, thereby leading to a situation where an MHDM BH and a Schwarzschild BH become indistinguishable.

Analysis

This paper presents a search for charged Higgs bosons, a hypothetical particle predicted by extensions to the Standard Model of particle physics. The search uses data from the CMS detector at the LHC, focusing on specific decay channels and final states. The results are interpreted within the generalized two-Higgs-doublet model (g2HDM), providing constraints on model parameters and potentially hinting at new physics. The observation of a 2.4 standard deviation excess at a specific mass point is intriguing and warrants further investigation.
Reference

An excess is observed with respect to the standard model expectation with a local significance of 2.4 standard deviations for a signal with an H$^\pm$ boson mass ($m_{\mathrm{H}^\pm}$) of 600 GeV.

Agentic AI for 6G RAN Slicing

Published:Dec 29, 2025 14:38
1 min read
ArXiv

Analysis

This paper introduces a novel Agentic AI framework for 6G RAN slicing, leveraging Hierarchical Decision Mamba (HDM) and a Large Language Model (LLM) to interpret operator intents and coordinate resource allocation. The integration of natural language understanding with coordinated decision-making is a key advancement over existing approaches. The paper's focus on improving throughput, cell-edge performance, and latency across different slices is highly relevant to the practical deployment of 6G networks.
Reference

The proposed Agentic AI framework demonstrates consistent improvements across key performance indicators, including higher throughput, improved cell-edge performance, and reduced latency across different slices.

2HDMs with Gauged U(1): Alive or Dead?

Published:Dec 29, 2025 13:16
1 min read
ArXiv

Analysis

This paper investigates Two Higgs Doublet Models (2HDMs) with an additional U(1) gauge symmetry, exploring their phenomenology and constraints from LHC data. The authors find that the simplest models are excluded by four-lepton searches, but introduce vector-like fermions to evade these constraints. They then analyze specific benchmark models (U(1)_H and U(1)_R) and identify allowed parameter space, suggesting future collider experiments can further probe these models.
Reference

The paper finds that the minimum setup of these 2HDMs has been excluded by current data for four lepton searches at LHC. However, introducing vector-like fermions can avoid these constraints.

Analysis

This paper introduces a Volume Integral Equation (VIE) method to overcome computational bottlenecks in modeling the optical response of metal nanoparticles using the Self-Consistent Hydrodynamic Drude Model (SC-HDM). The VIE approach offers significant computational efficiency compared to traditional Differential Equation (DE)-based methods, particularly for complex material responses. This is crucial for advancing quantum plasmonics and understanding the behavior of nanoparticles.
Reference

The VIE approach is a valuable methodological scaffold: It addresses SC-HDM and simpler models, but can also be adapted to more advanced ones.

Precise Baryogenesis in Extended Higgs Sector

Published:Dec 26, 2025 16:51
1 min read
ArXiv

Analysis

This paper investigates baryogenesis within a 2HDM+a model, offering improved calculations of the baryon asymmetry. It highlights the model's testability through LHC searches and flavor measurements, making it a promising area for future experimental verification. The paper's focus on precise calculations and testable predictions is significant.
Reference

The improved predictions for the baryon asymmetry find that it is rather suppressed compared to earlier predictions, requiring larger mixing between the singlet and 2HDM pseudoscalars and hence leading to a more easily testable model at colliders.

Analysis

This paper investigates the potential for detecting charged Higgs bosons, a key prediction of extensions to the Standard Model, at the Compact Linear Collider (CLIC). It focuses on a specific decay channel and provides simulation results to assess the feasibility of observing these particles. The study's significance lies in its contribution to the ongoing search for physics beyond the Standard Model and its exploration of the CLIC's capabilities.
Reference

The study finds that the signal significance can reach 5σ for 400 GeV and 600 GeV charged Higgs bosons in specific parameter spaces, and presents 2σ exclusion limits.

Radiative Charged Higgs Vertices in 3HDMs

Published:Dec 25, 2025 18:41
1 min read
ArXiv

Analysis

This paper investigates the radiative corrections to charged Higgs boson interactions in three Higgs doublet models (3HDMs). It focuses on the $H^+ W^- Z$ vertex, calculating it in different 3HDM types and comparing them to 2HDMs. The paper also explores the potential for detecting these interactions at the LHC via vector boson fusion (VBF), suggesting a possible smoking gun signal for 3HDMs.
Reference

The results also indicate a sizeable increment ($\sim 100\%$) over the corresponding form factors in 2HDMs. In addition, we probe the $H_{1,2}^+ W^- Z$ vertices at the 14 TeV LHC using vector boson fusion (VBF).

Research#llm👥 CommunityAnalyzed: Jan 4, 2026 09:18

Deep-Tempest: Using Deep Learning to Eavesdrop on HDMI

Published:Jul 31, 2024 05:54
1 min read
Hacker News

Analysis

This article reports on a research project that utilizes deep learning techniques to potentially eavesdrop on HDMI signals. The title suggests a focus on the application of deep learning to a specific security vulnerability. The source, Hacker News, indicates a technical audience and likely a focus on the technical details of the research.

Key Takeaways

    Reference