Search:
Match:
1 results

Deep Learning for Parton Distribution Extraction

Published:Dec 25, 2025 18:47
1 min read
ArXiv

Analysis

This paper introduces a novel machine-learning method using neural networks to extract Generalized Parton Distributions (GPDs) from experimental data. The method addresses the challenging inverse problem of relating Compton Form Factors (CFFs) to GPDs, incorporating physical constraints like the QCD kernel and endpoint suppression. The approach allows for a probabilistic extraction of GPDs, providing a more complete understanding of hadronic structure. This is significant because it offers a model-independent and scalable strategy for analyzing experimental data from Deeply Virtual Compton Scattering (DVCS) and related processes, potentially leading to a better understanding of the internal structure of hadrons.
Reference

The method constructs a differentiable representation of the Quantum Chromodynamics (QCD) PV kernel and embeds it as a fixed, physics-preserving layer inside a neural network.