Search:
Match:
2 results

Analysis

This paper addresses a significant challenge in geophysics: accurately modeling the melting behavior of iron under the extreme pressure and temperature conditions found at Earth's inner core boundary. The authors overcome the computational cost of DFT+DMFT calculations, which are crucial for capturing electronic correlations, by developing a machine-learning accelerator. This allows for more efficient simulations and ultimately provides a more reliable prediction of iron's melting temperature, a key parameter for understanding Earth's internal structure and dynamics.
Reference

The predicted melting temperature of 6225 K at 330 GPa.

Analysis

This article reports on research using Density Functional Theory plus Dynamical Mean-Field Theory (DFT+DMFT) to study the behavior of americium under high pressure. The focus is on understanding the correlated 5f electronic states and their impact on phase stability. The research likely contributes to the understanding of actinide materials under extreme conditions.
Reference

The article is based on DFT+DMFT calculations, a computational method.