Search:
Match:
1 results

Analysis

This paper introduces DA360, a novel approach to panoramic depth estimation that significantly improves upon existing methods, particularly in zero-shot generalization to outdoor environments. The key innovation of learning a shift parameter for scale invariance and the use of circular padding are crucial for generating accurate and spatially coherent 3D point clouds from 360-degree images. The substantial performance gains over existing methods and the creation of a new outdoor dataset (Metropolis) highlight the paper's contribution to the field.
Reference

DA360 shows substantial gains over its base model, achieving over 50% and 10% relative depth error reduction on indoor and outdoor benchmarks, respectively. Furthermore, DA360 significantly outperforms robust panoramic depth estimation methods, achieving about 30% relative error improvement compared to PanDA across all three test datasets.