Search:
Match:
2 results

Analysis

This paper addresses the practical challenge of incomplete multimodal MRI data in brain tumor segmentation, a common issue in clinical settings. The proposed MGML framework offers a plug-and-play solution, making it easily integrable with existing models. The use of meta-learning for adaptive modality fusion and consistency regularization is a novel approach to handle missing modalities and improve robustness. The strong performance on BraTS datasets, especially the average Dice scores across missing modality combinations, highlights the effectiveness of the method. The public availability of the source code further enhances the impact of the research.
Reference

The method achieved superior performance compared to state-of-the-art methods on BraTS2020, with average Dice scores of 87.55, 79.36, and 62.67 for WT, TC, and ET, respectively, across fifteen missing modality combinations.

Line-Based Event Camera Calibration

Published:Dec 27, 2025 02:30
1 min read
ArXiv

Analysis

This paper introduces a novel method for calibrating event cameras, a type of camera that captures changes in light intensity rather than entire frames. The key innovation is using lines detected directly from event streams, eliminating the need for traditional calibration patterns and manual object placement. This approach offers potential advantages in speed and adaptability to dynamic environments. The paper's focus on geometric lines found in common man-made environments makes it practical for real-world applications. The release of source code further enhances the paper's impact by allowing for reproducibility and further development.
Reference

Our method detects lines directly from event streams and leverages an event-line calibration model to generate the initial guess of camera parameters, which is suitable for both planar and non-planar lines.