Search:
Match:
1 results

Analysis

This paper explores the connection between the holographic central charge, black hole thermodynamics, and quantum information using the AdS/CFT correspondence. It investigates how the size of the central charge (large vs. small) impacts black hole stability, entropy, and the information loss paradox. The study provides insights into the nature of gravity and the behavior of black holes in different quantum gravity regimes.
Reference

The paper finds that the entanglement entropy of Hawking radiation before the Page time increases with time, with the slope determined by the central charge. After the Page time, the unitarity of black hole evaporation is restored, and the entanglement entropy includes a logarithmic correction related to the central charge.